Back
 MSCE  Vol.5 No.8 , August 2017
Ohmic Hetero-Junction of n-Type Silicon and Tungsten Trioxide for Visible-Light Sensitive Photocatalyst
Abstract: Visible light-sensitive photocatalyst was developed by combining n-type silicon (n-Si) and tungsten trioxide (WO3, n-Si/WO3), yielding an ohmic contact in between. In this system, the ohmic contact acted as an electron-and-hole mediator for the transfer of electrons and holes in the conduction band (CB) of WO3 and in the valence band (VB) of n-Si, respectively. Utilizing thus- constructed n-Si/WO3, the decomposition of 2-propanolto CO2 via acetone was achieved under visible light irradiation, by the contribution of holes in the VB of WO3 to decompose 2-propanol and the consumption of electrons in the CB of n-Si to reduce O2. The combination of p-type Si (p-Si) and WO3 (p-Si/ WO3), not the ohmic contact but the rectifying contact, was much less effective, compared to n-Si/WO3.
Cite this paper: Yoshimizu, M. , Hotori, Y. and Irie, H. (2017) Ohmic Hetero-Junction of n-Type Silicon and Tungsten Trioxide for Visible-Light Sensitive Photocatalyst. Journal of Materials Science and Chemical Engineering, 5, 33-43. doi: 10.4236/msce.2017.58004.
References

[1]   Fujishima, A. and Honda, K. (1972) Electrochemical Photolysis of Water at a Semicon-ductor Electrode. Nature, 238, 37-38.
https://doi.org/10.1038/238037a0

[2]   Hoffmann, M.R., Martin, S.T., Choi, W. and Bahnemann, D.W. (1995) Environmental Applicdations of Semiconductor Photocatalysis. Chemical Reviews, 95, 69-96.
https://doi.org/10.1021/cr00033a004

[3]   Linsebigler, A.L., Lu, G. and Yates. Jr., T. (1995) Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews, 95, 735-758.
https://doi.org/10.1021/cr00035a013

[4]   Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. and Taga, Y. (2001) Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science, 293, 269-271.
https://doi.org/10.1126/science.1061051

[5]   Yoneyama, H., Koizumi, M. and Tamura, H. (1979) Photolysis of Water on Illuminated Strontium Titanium Trioxide. Bulletin of the Chemical Society of Japan, 52, 3449-3450.
https://doi.org/10.1246/bcsj.52.3449

[6]   Maeda, K., Teramura, K., Lu, D., Takata, T., Saito, N., Inoue, Y. and Domen, K. (2006) Photocatalyst Releasing Hydrogen from Water. Nature, 440, 295.
https://doi.org/10.1038/440295a

[7]   Zou, Z., Ye, J., Sayama, K. and Arakawa, H. (2001) Direct Splitting of Water under Visible Light Irradiation with an Oxide Semiconductor Photocatalyst. Nature, 414, 625-627.
https://doi.org/10.1038/414625a

[8]   Maruyama, Y., Irie, H. and Hashimoto, H. (2006) Visible Light Sensitive Photocatalyst, Delafossite Structuredα-AgGaO2. The Journal of Physical Chemistry B, 110, 23274-23278.
https://doi.org/10.1021/jp063406s

[9]   Amao, F., Nogami, K., Abe, R. and Ohtani, B. (2008) Preparation and Characterization of Bismuth Tungstate Polycrystalline Flake-Ball Particlesfor Photocatalytic Reactions. The Journal of Physical Chemistry C, 112, 9320-9326.
https://doi.org/10.1021/jp801861r

[10]   Paola, A. D., Palmisano, L. and Augugliaro, V. (2000) Photocatalytic Behavior of Mixed WO3/WS2 Powders. Catalysis Today, 58, 141-149.
https://doi.org/10.1016/S0920-5861(00)00249-2

[11]   Long, M., Cai, W., Cai, J., Zhou, B., Chai, X. and Wu, Y. (2006) Efficient Photocatalytic Degradation of Phenol over Co3O4/BiVO4 Composite under Visible Light Irradiation. The Journal of Physical Chemistry B, 110, 20211-20216.
https://doi.org/10.1021/jp063441z

[12]   Bessekhouad, Y., Robert, D. and Weber, J.-V. (2005) Photocatalytic Activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 Heterojunctions. Catalysis Today, 101, 315-321.
https://doi.org/10.1016/j.cattod.2005.03.038

[13]   Gao, B., Ma, Y., Cao, Y., Yang, W. and Yao, J. (2006) Great Enhancement of Photocatalytic Activity of Nitrogen-Doped Titania by Coupling with Tungsten Oxide. The Journal of Physical Chemistry B, 110, 14391-14397.
https://doi.org/10.1021/jp0624606

[14]   Kim, H.G. and Jeong, E.D. (2006) Photocatalytic Ohmic Layered Nanocomposite for Efficient Utilization of Visible Light Photons. Applied Physics Letters, 89, Article ID: 064103.
https://doi.org/10.1063/1.2266237

[15]   Tada, H., Mitsui, T., Kiyonaga, T., Akita, T. and Tanaka, K. (2006) All-Solid-State Z-Scheme in CdS-Au-TiO2 Three-Component Nanojunction System. Nature Materials, 5, 782-786.
https://doi.org/10.1038/nmat1734

[16]   Iwase, A., Ng, Y.H., Ishiguro, Y., Kudo, A. and Amal, R. (2011) Reduced Graphene Oxide as a Solid-State Electron Mediator in Z-Scheme Photocatalytic Water Splitting under Visible Light. Journal of the American Chemical Society, 133, 11054- 11057.
https://doi.org/10.1021/ja203296z

[17]   Kobayashi, R., Tanigawa, S., Takashima, T., Ohtani, B. and Irie, H. (2014) Silver-Inserted Heterojunction Photocatalysts for Z-Scheme Overall Pure-Water Splitting under Visi-ble-Light Irradiation. The Journal of Physical Chemistry C, 118, 22450-22456.
https://doi.org/10.1021/jp5069973

[18]   Kobayashi, R., Kurihara, K., Takashima, T., Ohtani, B. and Irie, H. (2016) A Sil-ver-Inserted Zinc Rhodium Oxide and Bismuth Vanadium Oxide Heterojunction Photo-catalyst for Overall Pure-Water Splitting under Red Light. Journal of Materials Chemistry A, 4, 3061-3067.
https://doi.org/10.1039/C5TA08468G

[19]   Kobayashi, R., Takashima, T., Tanigawa, S., Takeuchi, S., Ohtani, B. and Irie, H. (2016) A Heterojunction Photocatalyst Composed of Zinc Rhodium Oxide, Single Crystal-Derived Bismuth Vanadium Oxide, and Silver for Overall Pure-Water Splitting under Visible Light up to 740 nm. Physical Chemistry Chemical Physics, 18, 27754-27760.
https://doi.org/10.1039/C6CP02903E

[20]   Hara, Y., Takashima, T., Kobayashi, R., Abeyrathna, S., Ohtani, B. and Irie, H. (2017) Silver-Inserted Heterojunction Photocatalyst Consisting of Zinc Rhodium Oxide and Silver Antimony Oxide for Overall Pure-Water Splitting under Visible Light. Applied Catalysis B: Environmental, 209, 663-668.
https://doi.org/10.1016/j.apcatb.2017.03.040

[21]   Mayer, M.T., Du, C. and Wang, D. (2012) Hematite/Si Nanowire Dual-Absorber System for Photoelectrochemical Water Splitting at Low Applied Potentials. Journal of the American Chemical Society, 134, 12406-12409.
https://doi.org/10.1021/ja3051734

[22]   Khaselev, O., Bansal, A. and Turner, J.A. (2001) High-Efficiency Integrated Mul-tijunction Photovoltaic/Electrolysis Systems for Hydrogen Production. International Journal of Hydrogen Energy, 26, 127-132.
https://doi.org/10.1016/S0360-3199(00)00039-2

[23]   Reece, S.Y., Hamel, J.A., Sung, K., Jarvi, T.D., Esswein, A.J., Oijpers, J.J.H. and Nicera, D.G. (2011) Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts. Science, 334, 645-648.
https://doi.org/10.1126/science.1209816

[24]   Arai, T., Yanagida, M., Konishi, Y., Iwasaki, Y., Sugihara, H. and Sayama, K. (2007) Efficient Complete Oxidation of Acetaldehyde into CO2 over CuBi2O4/WO3 Composite Photocatalyst under Visible and UV Light Irradiation. Journal of Physical Chemistry Letters, 111, 7574-7577.
https://doi.org/10.1021/jp0725533

[25]   Jia, Q., Iwase, A. and Kudo, A. (2014) BiVO4-Ru/SrTiO3: Rh Composite Z-Scheme Pho-tocatalyst for Solar Water Splitting. Chemical Science, 5, 1513-1519.
https://doi.org/10.1039/c3sc52810c

[26]   Yamane, S., Kato, N., Kojima, S., Imanishi, A., Ogaea, S., Yoshida, N., Nonomura, S. and Nakato, Y. (2009) Efficient Solar Water Splitting with a Composite “n-Si/p-CuI /n-i-p a-Si/n-p GaP/RuO2” Semiconductor Electrode. The Journal of Physical Chemistry C, 113, 14575-14581.
https://doi.org/10.1021/jp904297v

[27]   Deki, S., Beleke, A.B., Kotani, Y. and Mizuhata, M. (2010) Synthesis of Tungsten Oxide Thin Film by Liquid Phase Deposition. Materials Chemistry and Physics, 123, 614-619.
https://doi.org/10.1016/j.matchemphys.2010.05.024

[28]   Tanaka, H., Shimakawa, T., Miyata, T., Sato, H. and Minami, T. (2004) Electrical and Optical Properties of TCO-Cu2O Heterojunction Devices. Thin Solid Films, 469-470, 80-85.
https://doi.org/10.1016/j.tsf.2004.06.180

[29]   Irie, H., Watanabe, Y. and Hashimoto, K. (2003) Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders. The Journal of Physical Chemistry B, 107, 5483-5486.
https://doi.org/10.1021/jp030133h

[30]   Bamwenda, G.R., Sayama, K. and Arakawa, H. (1999) The Effect of Selected Reaction Parameters on the Photoproduction of Oxygen and Hydrogen from a WO3-Fe2+-Fe3+ Aqueous Suspension. Journal of Photochemistry and Photobiology A: Chemistry, 122, 175-183.
https://doi.org/10.1016/S1010-6030(99)00026-X

[31]   Torimoto, T., Nakamura, N., Ikeda, S. and Ohtani, B. (2002) Discrimination of the Active Crystalline Phases in Anatase-Rutile Mixed Titanium(IV) Oxide Photocatalysts through Action Spectrum Analyses. Physical Chemistry Chemical Physics, 4, 5910-5914.
https://doi.org/10.1039/B207448F

[32]   Irie, H., Miura, S., Kamiya, K. and Hashimoto, K. (2008) Efficient Visible Light- Sensitive Photocatalysts: Grafting Cu(II) Ions onto TiO2 and WO3 Photocatalysts. Chemical Physics Letters, 457, 202-205.
https://doi.org/10.1016/j.cplett.2008.04.006

[33]   Abe, R., Takami, H., Murakami, N. and Ohtani, B. (2008) Pristine Simple Oxides as Visible Light Driven Photocatalysts: Highly Efficient Decomposition of Organic Compounds over Platinum-Loaded Tungsten Oxide. Journal of the American Chemical Society, 130, 7780-7781.
https://doi.org/10.1021/ja800835q

 
 
Top