Back
 IJMNTA  Vol.6 No.3 , September 2017
Hermite Solution of Bagley-Torvik Equation of Fractional Order
Abstract: In this paper, a new methodology of fractional derivatives based upon Hermite polynomial is projected. The fractional derivatives are demonstrated according to Caputo sense. Hermite collocation technique is introduced to express the definite results of Bagley-Torvik Equations. The appropriateness and straightforwardness of numerical plan is presented by graphs and error tables.
Cite this paper: Zubair, T. , Sajjad, M. , Madni, R. and Shabir, A. (2017) Hermite Solution of Bagley-Torvik Equation of Fractional Order. International Journal of Modern Nonlinear Theory and Application, 6, 104-118. doi: 10.4236/ijmnta.2017.63010.
References

[1]   Deng, W. (2008) Finite Element Method for the Space and Time Fractional Fokker-Planck Equation. SIAM Journal on Numerical Analysis, 47, 204-226.
http://epubs.siam.org/doi/abs/10.1137/080714130
https://doi.org/10.1137/080714130


[2]   Gao, G.H., Sun, Z.Z. and Zhang, Y.N. (2012) A Finite Difference Scheme for Fractional Sub-Diffusion Equations on an Unbounded Domain Using Artificial Boundary Conditions. Journal of Computational Physics, 231, 2865-2879.
https://www.hindawi.com/journals/mpe/2012/924956/
https://doi.org/10.1016/j.jcp.2011.12.028


[3]   Momani, S., Odibat, Z. and Erturk, V.S. (2007) Generalized Differential Transform Method for Solving a Space- and Time-Fractional Diffusion-Wave Equation. Physics Letters A, 370, 379-387.
https://www.mutah.edu.jo/userhomepages/shmomani/public.htm
https://doi.org/10.1016/j.physleta.2007.05.083


[4]   Odibat, Z. and Momani, S. (2008) A Generalized Differential Transform Method for Linear Partial Differential Equations of Fractional Order. Applied Mathematics Letters, 21, 194-199.
https://pdfs.semanticscholar.org/7250/38695674846cdbb7c5f5d2d9cbcb5f4e0fc9.pdf
https://doi.org/10.1016/j.aml.2007.02.022

[5]   Hu, Y., Luo, Y. and Lu, Z. (2008) Analytical Solution of the Linear Fractional Differential Equation by Adomian Decomposition Method. Journal of Computational and Applied Mathematics, 215, 220-229.
https://pdfs.semanticscholar.org/58a6/966afe30ccc2f7bbc6b
17319d6a3d1a663ba.pdf
https://doi.org/10.1016/j.cam.2007.04.005

[6]   El-Sayed, A.M.A. and Gaber, M. (2006) The Adomian Decomposition Method for Solving Partial Differential Equations of Fractal Order in Finite Domains. Physics Letters A, 359, 175-182.
https://www.researchgate.net/publication/223114291_The_A
domian_decomposition_method_for_solving_partial_differential
_equations_of_fractal_order_in_finite_domains
https://doi.org/10.1016/j.physleta.2006.06.024


[7]   El-Sayed, A.M.A., Behiry, S.H. and Raslan, W.E. (2010) Adomian’s Decomposition Method for Solving an Intermediate Fractional Advection-Dispersion Equation. Computers & Mathematics with Applications, 59, 1759-1765.
http://www.sciencedirect.com/science/article/pii/S0898122109005537
https://doi.org/10.1016/j.camwa.2009.08.065


[8]   Inc, M. (2008) The Approximate and Exact Solutions of the Space- and Time-Fractional Burgers Equations with Initial Conditions by Variational Iteration Method. Journal of Mathematical Analysis and Applications, 345, 476-484.
http://www.sciencedirect.com/science/article/pii/S0022247X08003739
https://doi.org/10.1016/j.jmaa.2008.04.007


[9]   Odibat, Z. and Momani, S. (2009) The Variational Iteration Method: An Efficient Scheme for Handling Fractional Partial Differential Equations in Fluid Mechanics. Computers & Mathematics with Applications, 58, 2199-2208.
http://www.sciencedirect.com/science/article/pii/S0898122109001436
https://doi.org/10.1016/j.camwa.2009.03.009


[10]   Wu, G.C. and Lee, E.W.M. (2010) Fractional Variational Iteration Method and Its Application. Physics Letters A, 374, 2506-2509.
https://zulfahmed.files.wordpress.com/2015/06/2010-physic
s-letters-section-a-general-atomic-and-solid-state-physics-37425.pdf
https://doi.org/10.1016/j.physleta.2010.04.034

[11]   He, J.H. (2003) Homotopy Perturbation Method: A New Nonlinear Analytical Technique. Applied Mathematics and Computation, 135, 73-79.
https://www.researchgate.net/publication/242791050_Homo
topy_perturbation_method_A_new_nonlinear_analytical_technique
https://doi.org/10.1016/S0096-3003(01)00312-5


[12]   Zubair, T., Hamid, M., Saleem, M. and Mohyud-Din, S.T. (2015) Numerical Solution of Infinite Boundary Integral Equations. International Journal of Modern Applied Physics, 5, 18-25.
https://www.researchgate.net/publication/311202189_Nume
rical_Solution_of_Infinite_Boundary_Integral_Equations


[13]   Bin, Z. (2012) (G’/G)-Expansion Method for Solving Fractional Partial Differential Equations in the Theory of Mathematical Physics. Communications in Theoretical Physics, 58, 623-630.
http://ctp.itp.ac.cn/EN/article/downloadArticleFile.do?attachType=PDF&id=15873
https://doi.org/10.1088/0253-6102/58/5/02


[14]   Usman, M. and Mohyud-Din, S.T. (2013) Traveling Wave Solutions of 7th Order Kaup Kuperschmidt and Lax Equations of Fractional-Order. International Journal of Advances in Applied Mathematics and Mechanics, 1, 17-34.
http://www.ijaamm.com/uploads/2/1/4/8/21481830/paper_2_sayed.pdf

[15]   Usman, M. and Mohyud-Din, S.T. (2014) U-Expansion Method for 5th Order Kaup Kuperschmidt and Lax Equation of Fractional Order. International Journal of Modern Mathematical Sciences, 9, 63-81.
http://www.modernscientificpress.com/journals/ViewArticle.
aspx?XBq7Uu+HD/8eRjFUGMqlRUFMGJSojFCd8JeYyjsMmViT
RlEyTDVgYMCmavqTokhF


[16]   Alzaidy, J.F. (2013) Fractional Sub-Equation Method and Its Applications to the Space-Time Fractional Differential Equations in Mathematical Physics. British Journal of Mathematics & Computer Science, 3, 153-163.
https://www.researchgate.net/publication/271263179_Fracti
onal_Sub-Equation_Method_and_its_Applications_to_the_Space-
Time_Fractional_Differential_Equations_in_Mathematical_Physics
https://doi.org/10.9734/BJMCS/2013/2908


[17]   Alzaidy, J.F. (2013) The Fractional Sub-Equation Method and Exact Analytical Solutions for Some Nonlinear Fractional PDEs. American Journal of Mathematical Analysis, 1, 14-19.
http://pubs.sciepub.com/ajma/1/1/3/

[18]   Jafari, H., Yousefi, S.A., Firoozjaee, M.A., Momani, S. and Khalique, C.M. (2011) Application of Legendre Wavelets for Solving Fractional Differential Equations. Computers & Mathematics with Applications, 62, 1038-1045.
http://www.sciencedirect.com/science/article/pii/S0898122111003257
https://doi.org/10.1016/j.camwa.2011.04.024


[19]   Khader, M.M., El Danaf, T.S. and Hendy, A.S. (2013) A Computational Matrix Method for Solving Systems of High Order Fractional Differential Equations. Applied Mathematical Modelling, 37, 4035-4050.
https://www.researchgate.net/publication/235916821_A_com
putational_matrix_method_for_solving_systems_of_high_order_f
ractional_differential_equations
https://doi.org/10.1016/j.apm.2012.08.009


[20]   Zhu, L. and Fan, Q.B. (2012) Solving Fractional Nonlinear Fredholm Integro-Differential Equations by the Second Kind Chebyshev Wavelet. Communications in Nonlinear Science and Numerical Simulation, 17, 2333-2341.
https://advancesindifferenceequations.springeropen.com.preview
live.oscarjournals.springer.com/track/pdf/10.1186/s13662-017-
10856?site=advancesindifferenceequations.springeropen.com.pre
viewlive.oscarjournals.springer.com
https://doi.org/10.1016/j.cnsns.2011.10.014

[21]   Agarwal, N. (1953) A Propos d’unc Note de H4. Pierre Humbert, C. R. Se’ances Acad. Sci., 236, 2031-2032.
http://jnus.org/pdf/1/2014/1/1038.pdf

[22]   Li, Y. and Zhao, W. (2010) Haar Wavelets Operational Matrix of Fractional Order Integration and Its Applications in Solving the Fractional Order Differential Equations. Applied Mathematics and Computation, 216, 2276-2285.
http://dl.acm.org/citation.cfm?id=2641414
https://doi.org/10.1016/j.amc.2010.03.063


[23]   Khader, M.M. and Hendy, A.S. (2012) The Approximate and Exact Solutions of the Fractional-Order Delay Differential Equations Using Legendre Pseudo Spectral Method. International Journal of Pure and Applied Mathematics, 74, 287-297.
http://www.ijpam.eu/contents/2012-74-3/1/1.pdf

[24]   Sweilam, N.H. and Khader, M.M. (2010) A Chebyshev Pseudo-Spectral Method for Solving Fractional Integro-Differential Equations. The ANZIAM Journal, 51, 464-475.
https://www.cambridge.org/core/journals/anziam-journal/arti
cle/div-classtitlea-chebyshev-pseudo-spectral-method-for-solvin
g-fractional-order-integro-differential-equationsdiv/D54540C52
DE837C74F79EDB24A32FE71
https://doi.org/10.1017/S1446181110000830


[25]   Beheshti, S., Khosravian-Arab, H. and Zare, I. (2012) Numerical Solution of Fractional Differential Equations by Using the Jacobi Polynomials. Bulletin of the Iran Mathematical Society, 39, 6461-6470.
http://bims.iranjournals.ir/article_947_b3ed3a5b2e22cf9386624a6699f3ff0d.pdf

[26]   Xu, C.-L. and Guo, B.-Y. (2002) Laguerre Pseudospectral Method for Non-Linear Partial Differential Equations. Journal of Computational Mathematics-International Edition, 20, 413-428.
http://dergi.cumhuriyet.edu.tr/cumuscij/article/view/5000118841

[27]   Razzaghi, M. and Yousefi, S. (2001) Legendre Wavelets Method for the Solution of Nonlinear Problems in the Calculus of Variations. Mathematical and Computing Modelling, 34, 45-54.
http://www.sciencedirect.com/science/article/pii/S0895717701000486

[28]   Khader, M.M. (2012) Introducing an Efficient Modification of the Homotopy Perturbation Method by Using Chebyshev Polynomials. Arab Journal of Mathematical Sciences, 18, 61-71.
http://www.sciencedirect.com/science/article/pii/S131951661100051X
https://doi.org/10.1016/j.ajmsc.2011.09.001


[29]   Khader, M.M., Sweilam, N.H. and Mahdy, A.M.S. (2011) An Efficient Numerical Method for Solving the Fractional Diffusion Equation. Journal of Applied Mathematics and Bioinformatics, 1, 1-12.
http://www.scienpress.com/upload/JAMB/Vol%201_2_1.pdf

[30]   Hussaini, M.Y. and Zang, T.A. (1987) Spectral Methods in Fluid Dynamics. Annual Review of Fluid Mechanics, 19, 339-367.
http://www.annualreviews.org/doi/abs/10.1146/annurev.fl.19.010187.002011
https://doi.org/10.1146/annurev.fl.19.010187.002011


[31]   Funaro, D. (1992) Polynomial Approximation of Differential Equations. Springer Verlag, New York, 8.
http://www.springer.com/gb/book/9783662138786

[32]   Khader, M.M., El Danaf, T.S. and Hendy, A.S. (2012) Efficient Spectral Collocation Method for Solving Multi-Term Fractional Differential Equations Based on the Generalized Laguerre Polynomials. Fractional Calculus Application, 3, 1-14.
http://naturalspublishing.net/files/published/vk2130l11wp11o.pdf

[33]   Khader, M.M. (2011) On the Numerical Solutions for the Fractional Diffusion Equation. Communications in Nonlinear Science and Numerical Simulations, 16, 2535-2542.
http://www.ijpam.eu/contents/2013-84-4/1/1.pdf

[34]   Doha, E.H., Bahrawy, A.H. and Ezz-Eldien, S.S. (2011) Efficient Chebyshev Spectral Methods for Solving Multi-Term Fractional Orders Differential Equations. Applied Mathematical Modelling, 35, 5662-5672.
http://naturalspublishing.net/files/published/vk2130l11wp11o.pdf
https://doi.org/10.1016/j.apm.2011.05.011


[35]   Dalir, M. and Bashour, M. (2010) Applications of Fractional Calculus. Applied Mathematical Sciences, 4, 1021-1032.
https://pdfs.semanticscholar.org/b9f3/cebf62c66c7bc06eab0
09aa1d60d70a19312.pdf

[36]   Schneider, K., Kevlahan, N.K.R. and Farge, M. (1997) Comparison of an Adaptive Wavelet Method and Nonlinearly Filtered Pseudospectral Methods for Two-Dimensional Turbulence. Theoretical and Computational Fluid Dynamics, 9, 919-206.
https://link.springer.com/article/10.1007/s001620050040

[37]   Erdelyi, A. (1955) Higher Transcendental Functions, McGrawHill, New York.
http://apps.nrbook.com/bateman/Vol3.pdf

[38]   Bagley, R.L. and Torvik, P.J. (1983) Fractional Calculus—A Different Approach to the Analysis of Viscoelastically Damped Structures. AIAA Journal, 21, 741-748.
https://arc.aiaa.org/doi/abs/10.2514/3.8142
https://doi.org/10.2514/3.8142

[39]   Podlubny, I. (1999) Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego.
http://www.sciepub.com/reference/3051

[40]   Bagley, R.L. and Torvik, P.J. (1984) On the Appearance of the Fractional Derivative in the Behavior of Real Materials. Journal of Applied Mechanics, 51, 294-298.
http://appliedmechanics.asmedigitalcollection.asme.org/article.aspx?articleid=1407517
https://doi.org/10.1115/1.3167615


[41]   Zahoor, M.A., Khan Raja, J.A. and Qureshi, I.M. (2010) Heuristic Computational Approach Using Swarm Intelligence in Solving Fractional Differential Equations. Proceedings of the 12th Annual Genetic and Evolutionary Computation Conference, Portland, 2023-2026.
https://www.hindawi.com/journals/cin/2012/721867/ref/

[42]   Ray, S.S. and Bera, R.K. (2005) Analytical Solution of the Bagley Torvik Equation by Adomian Decomposition Method. Applied Mathematics and Computation, 168, 398-410.
http://www.ijpam.eu/contents/2016-110-2/3/

[43]   Zahoor, R.M.A., Khan, J.A. and Qureshi, I.M. (2009) Evolutionary Computation Technique for Solving Riccati Differential Equation of Arbitrary Order. World Academy of Science, Engineering and Technology, 58, 531-536.
https://scholar.google.com.pk/citations?view_op=view_citatio
n&hl=en&user=z9xwIcMAAAAJ&citation_for_view=z9xwIcMA
AAAJ:WF5omc3nYNoC

[44]   Raja, M.A.Z., Khan, J.A. and Qureshi, I.M. (2010) Evolutionary Computational Intelligence in Solving the Fractional Differential Equations. Proceedings of the Asian Conference on Intelligent Information and Database Systems, Hue City, 24-26 March 2010, 231-240.
https://link.springer.com/chapter/10.1007/978-3-642-12145-6_24
https://doi.org/10.1007/978-3-642-12145-6_24

[45]   Bojdi, Z.K., Ahmadi-Asland, S. and Aminataei, A. (2013) Operational Matrices with Respect to Hermite Polynomials and Their Applications in Solving Linear Differential Equations with Variable Coefficients. Journal of Linear and Topological Algebra, 2, 91-103.
https://doaj.org/toc/2345-5934

 
 
Top