[1] Deng, W. (2008) Finite Element Method for the Space and Time Fractional Fokker-Planck Equation. SIAM Journal on Numerical Analysis, 47, 204-226.
http://epubs.siam.org/doi/abs/10.1137/080714130
https://doi.org/10.1137/080714130
[2] Gao, G.H., Sun, Z.Z. and Zhang, Y.N. (2012) A Finite Difference Scheme for Fractional Sub-Diffusion Equations on an Unbounded Domain Using Artificial Boundary Conditions. Journal of Computational Physics, 231, 2865-2879.
https://www.hindawi.com/journals/mpe/2012/924956/
https://doi.org/10.1016/j.jcp.2011.12.028
[3] Momani, S., Odibat, Z. and Erturk, V.S. (2007) Generalized Differential Transform Method for Solving a Space- and Time-Fractional Diffusion-Wave Equation. Physics Letters A, 370, 379-387.
https://www.mutah.edu.jo/userhomepages/shmomani/public.htm
https://doi.org/10.1016/j.physleta.2007.05.083
[4] Odibat, Z. and Momani, S. (2008) A Generalized Differential Transform Method for Linear Partial Differential Equations of Fractional Order. Applied Mathematics Letters, 21, 194-199.
https://pdfs.semanticscholar.org/7250/38695674846cdbb7c5f5d2d9cbcb5f4e0fc9.pdf
https://doi.org/10.1016/j.aml.2007.02.022
[5] Hu, Y., Luo, Y. and Lu, Z. (2008) Analytical Solution of the Linear Fractional Differential Equation by Adomian Decomposition Method. Journal of Computational and Applied Mathematics, 215, 220-229.
https://pdfs.semanticscholar.org/58a6/966afe30ccc2f7bbc6b
17319d6a3d1a663ba.pdf
https://doi.org/10.1016/j.cam.2007.04.005
[6] El-Sayed, A.M.A. and Gaber, M. (2006) The Adomian Decomposition Method for Solving Partial Differential Equations of Fractal Order in Finite Domains. Physics Letters A, 359, 175-182.
https://www.researchgate.net/publication/223114291_The_A
domian_decomposition_method_for_solving_partial_differential
_equations_of_fractal_order_in_finite_domains
https://doi.org/10.1016/j.physleta.2006.06.024
[7] El-Sayed, A.M.A., Behiry, S.H. and Raslan, W.E. (2010) Adomian’s Decomposition Method for Solving an Intermediate Fractional Advection-Dispersion Equation. Computers & Mathematics with Applications, 59, 1759-1765.
http://www.sciencedirect.com/science/article/pii/S0898122109005537
https://doi.org/10.1016/j.camwa.2009.08.065
[8] Inc, M. (2008) The Approximate and Exact Solutions of the Space- and Time-Fractional Burgers Equations with Initial Conditions by Variational Iteration Method. Journal of Mathematical Analysis and Applications, 345, 476-484.
http://www.sciencedirect.com/science/article/pii/S0022247X08003739
https://doi.org/10.1016/j.jmaa.2008.04.007
[9] Odibat, Z. and Momani, S. (2009) The Variational Iteration Method: An Efficient Scheme for Handling Fractional Partial Differential Equations in Fluid Mechanics. Computers & Mathematics with Applications, 58, 2199-2208.
http://www.sciencedirect.com/science/article/pii/S0898122109001436
https://doi.org/10.1016/j.camwa.2009.03.009
[10] Wu, G.C. and Lee, E.W.M. (2010) Fractional Variational Iteration Method and Its Application. Physics Letters A, 374, 2506-2509.
https://zulfahmed.files.wordpress.com/2015/06/2010-physic
s-letters-section-a-general-atomic-and-solid-state-physics-37425.pdf
https://doi.org/10.1016/j.physleta.2010.04.034
[11] He, J.H. (2003) Homotopy Perturbation Method: A New Nonlinear Analytical Technique. Applied Mathematics and Computation, 135, 73-79.
https://www.researchgate.net/publication/242791050_Homo
topy_perturbation_method_A_new_nonlinear_analytical_technique
https://doi.org/10.1016/S0096-3003(01)00312-5
[12] Zubair, T., Hamid, M., Saleem, M. and Mohyud-Din, S.T. (2015) Numerical Solution of Infinite Boundary Integral Equations. International Journal of Modern Applied Physics, 5, 18-25.
https://www.researchgate.net/publication/311202189_Nume
rical_Solution_of_Infinite_Boundary_Integral_Equations
[13] Bin, Z. (2012) (G’/G)-Expansion Method for Solving Fractional Partial Differential Equations in the Theory of Mathematical Physics. Communications in Theoretical Physics, 58, 623-630.
http://ctp.itp.ac.cn/EN/article/downloadArticleFile.do?attachType=PDF&id=15873
https://doi.org/10.1088/0253-6102/58/5/02
[14] Usman, M. and Mohyud-Din, S.T. (2013) Traveling Wave Solutions of 7th Order Kaup Kuperschmidt and Lax Equations of Fractional-Order. International Journal of Advances in Applied Mathematics and Mechanics, 1, 17-34.
http://www.ijaamm.com/uploads/2/1/4/8/21481830/paper_2_sayed.pdf
[15] Usman, M. and Mohyud-Din, S.T. (2014) U-Expansion Method for 5th Order Kaup Kuperschmidt and Lax Equation of Fractional Order. International Journal of Modern Mathematical Sciences, 9, 63-81.
http://www.modernscientificpress.com/journals/ViewArticle.
aspx?XBq7Uu+HD/8eRjFUGMqlRUFMGJSojFCd8JeYyjsMmViT
RlEyTDVgYMCmavqTokhF
[16] Alzaidy, J.F. (2013) Fractional Sub-Equation Method and Its Applications to the Space-Time Fractional Differential Equations in Mathematical Physics. British Journal of Mathematics & Computer Science, 3, 153-163.
https://www.researchgate.net/publication/271263179_Fracti
onal_Sub-Equation_Method_and_its_Applications_to_the_Space-
Time_Fractional_Differential_Equations_in_Mathematical_Physics
https://doi.org/10.9734/BJMCS/2013/2908
[17] Alzaidy, J.F. (2013) The Fractional Sub-Equation Method and Exact Analytical Solutions for Some Nonlinear Fractional PDEs. American Journal of Mathematical Analysis, 1, 14-19.
http://pubs.sciepub.com/ajma/1/1/3/
[18] Jafari, H., Yousefi, S.A., Firoozjaee, M.A., Momani, S. and Khalique, C.M. (2011) Application of Legendre Wavelets for Solving Fractional Differential Equations. Computers & Mathematics with Applications, 62, 1038-1045.
http://www.sciencedirect.com/science/article/pii/S0898122111003257
https://doi.org/10.1016/j.camwa.2011.04.024
[19] Khader, M.M., El Danaf, T.S. and Hendy, A.S. (2013) A Computational Matrix Method for Solving Systems of High Order Fractional Differential Equations. Applied Mathematical Modelling, 37, 4035-4050.
https://www.researchgate.net/publication/235916821_A_com
putational_matrix_method_for_solving_systems_of_high_order_f
ractional_differential_equations
https://doi.org/10.1016/j.apm.2012.08.009
[20] Zhu, L. and Fan, Q.B. (2012) Solving Fractional Nonlinear Fredholm Integro-Differential Equations by the Second Kind Chebyshev Wavelet. Communications in Nonlinear Science and Numerical Simulation, 17, 2333-2341.
https://advancesindifferenceequations.springeropen.com.preview
live.oscarjournals.springer.com/track/pdf/10.1186/s13662-017-
10856?site=advancesindifferenceequations.springeropen.com.pre
viewlive.oscarjournals.springer.com
https://doi.org/10.1016/j.cnsns.2011.10.014
[21] Agarwal, N. (1953) A Propos d’unc Note de H4. Pierre Humbert, C. R. Se’ances Acad. Sci., 236, 2031-2032.
http://jnus.org/pdf/1/2014/1/1038.pdf
[22] Li, Y. and Zhao, W. (2010) Haar Wavelets Operational Matrix of Fractional Order Integration and Its Applications in Solving the Fractional Order Differential Equations. Applied Mathematics and Computation, 216, 2276-2285.
http://dl.acm.org/citation.cfm?id=2641414
https://doi.org/10.1016/j.amc.2010.03.063
[23] Khader, M.M. and Hendy, A.S. (2012) The Approximate and Exact Solutions of the Fractional-Order Delay Differential Equations Using Legendre Pseudo Spectral Method. International Journal of Pure and Applied Mathematics, 74, 287-297.
http://www.ijpam.eu/contents/2012-74-3/1/1.pdf
[24] Sweilam, N.H. and Khader, M.M. (2010) A Chebyshev Pseudo-Spectral Method for Solving Fractional Integro-Differential Equations. The ANZIAM Journal, 51, 464-475.
https://www.cambridge.org/core/journals/anziam-journal/arti
cle/div-classtitlea-chebyshev-pseudo-spectral-method-for-solvin
g-fractional-order-integro-differential-equationsdiv/D54540C52
DE837C74F79EDB24A32FE71
https://doi.org/10.1017/S1446181110000830
[25] Beheshti, S., Khosravian-Arab, H. and Zare, I. (2012) Numerical Solution of Fractional Differential Equations by Using the Jacobi Polynomials. Bulletin of the Iran Mathematical Society, 39, 6461-6470.
http://bims.iranjournals.ir/article_947_b3ed3a5b2e22cf9386624a6699f3ff0d.pdf
[26] Xu, C.-L. and Guo, B.-Y. (2002) Laguerre Pseudospectral Method for Non-Linear Partial Differential Equations. Journal of Computational Mathematics-International Edition, 20, 413-428.
http://dergi.cumhuriyet.edu.tr/cumuscij/article/view/5000118841
[27] Razzaghi, M. and Yousefi, S. (2001) Legendre Wavelets Method for the Solution of Nonlinear Problems in the Calculus of Variations. Mathematical and Computing Modelling, 34, 45-54.
http://www.sciencedirect.com/science/article/pii/S0895717701000486
[28] Khader, M.M. (2012) Introducing an Efficient Modification of the Homotopy Perturbation Method by Using Chebyshev Polynomials. Arab Journal of Mathematical Sciences, 18, 61-71.
http://www.sciencedirect.com/science/article/pii/S131951661100051X
https://doi.org/10.1016/j.ajmsc.2011.09.001
[29] Khader, M.M., Sweilam, N.H. and Mahdy, A.M.S. (2011) An Efficient Numerical Method for Solving the Fractional Diffusion Equation. Journal of Applied Mathematics and Bioinformatics, 1, 1-12.
http://www.scienpress.com/upload/JAMB/Vol%201_2_1.pdf
[30] Hussaini, M.Y. and Zang, T.A. (1987) Spectral Methods in Fluid Dynamics. Annual Review of Fluid Mechanics, 19, 339-367.
http://www.annualreviews.org/doi/abs/10.1146/annurev.fl.19.010187.002011
https://doi.org/10.1146/annurev.fl.19.010187.002011
[31] Funaro, D. (1992) Polynomial Approximation of Differential Equations. Springer Verlag, New York, 8.
http://www.springer.com/gb/book/9783662138786
[32] Khader, M.M., El Danaf, T.S. and Hendy, A.S. (2012) Efficient Spectral Collocation Method for Solving Multi-Term Fractional Differential Equations Based on the Generalized Laguerre Polynomials. Fractional Calculus Application, 3, 1-14.
http://naturalspublishing.net/files/published/vk2130l11wp11o.pdf
[33] Khader, M.M. (2011) On the Numerical Solutions for the Fractional Diffusion Equation. Communications in Nonlinear Science and Numerical Simulations, 16, 2535-2542.
http://www.ijpam.eu/contents/2013-84-4/1/1.pdf
[34] Doha, E.H., Bahrawy, A.H. and Ezz-Eldien, S.S. (2011) Efficient Chebyshev Spectral Methods for Solving Multi-Term Fractional Orders Differential Equations. Applied Mathematical Modelling, 35, 5662-5672.
http://naturalspublishing.net/files/published/vk2130l11wp11o.pdf
https://doi.org/10.1016/j.apm.2011.05.011
[35] Dalir, M. and Bashour, M. (2010) Applications of Fractional Calculus. Applied Mathematical Sciences, 4, 1021-1032.
https://pdfs.semanticscholar.org/b9f3/cebf62c66c7bc06eab0
09aa1d60d70a19312.pdf
[36] Schneider, K., Kevlahan, N.K.R. and Farge, M. (1997) Comparison of an Adaptive Wavelet Method and Nonlinearly Filtered Pseudospectral Methods for Two-Dimensional Turbulence. Theoretical and Computational Fluid Dynamics, 9, 919-206.
https://link.springer.com/article/10.1007/s001620050040
[37] Erdelyi, A. (1955) Higher Transcendental Functions, McGrawHill, New York.
http://apps.nrbook.com/bateman/Vol3.pdf
[38] Bagley, R.L. and Torvik, P.J. (1983) Fractional Calculus—A Different Approach to the Analysis of Viscoelastically Damped Structures. AIAA Journal, 21, 741-748.
https://arc.aiaa.org/doi/abs/10.2514/3.8142
https://doi.org/10.2514/3.8142
[39] Podlubny, I. (1999) Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego.
http://www.sciepub.com/reference/3051
[40] Bagley, R.L. and Torvik, P.J. (1984) On the Appearance of the Fractional Derivative in the Behavior of Real Materials. Journal of Applied Mechanics, 51, 294-298.
http://appliedmechanics.asmedigitalcollection.asme.org/article.aspx?articleid=1407517
https://doi.org/10.1115/1.3167615
[41] Zahoor, M.A., Khan Raja, J.A. and Qureshi, I.M. (2010) Heuristic Computational Approach Using Swarm Intelligence in Solving Fractional Differential Equations. Proceedings of the 12th Annual Genetic and Evolutionary Computation Conference, Portland, 2023-2026.
https://www.hindawi.com/journals/cin/2012/721867/ref/
[42] Ray, S.S. and Bera, R.K. (2005) Analytical Solution of the Bagley Torvik Equation by Adomian Decomposition Method. Applied Mathematics and Computation, 168, 398-410.
http://www.ijpam.eu/contents/2016-110-2/3/
[43] Zahoor, R.M.A., Khan, J.A. and Qureshi, I.M. (2009) Evolutionary Computation Technique for Solving Riccati Differential Equation of Arbitrary Order. World Academy of Science, Engineering and Technology, 58, 531-536.
https://scholar.google.com.pk/citations?view_op=view_citatio
n&hl=en&user=z9xwIcMAAAAJ&citation_for_view=z9xwIcMA
AAAJ:WF5omc3nYNoC
[44] Raja, M.A.Z., Khan, J.A. and Qureshi, I.M. (2010) Evolutionary Computational Intelligence in Solving the Fractional Differential Equations. Proceedings of the Asian Conference on Intelligent Information and Database Systems, Hue City, 24-26 March 2010, 231-240.
https://link.springer.com/chapter/10.1007/978-3-642-12145-6_24
https://doi.org/10.1007/978-3-642-12145-6_24
[45] Bojdi, Z.K., Ahmadi-Asland, S. and Aminataei, A. (2013) Operational Matrices with Respect to Hermite Polynomials and Their Applications in Solving Linear Differential Equations with Variable Coefficients. Journal of Linear and Topological Algebra, 2, 91-103.
https://doaj.org/toc/2345-5934