Back
 EPE  Vol.9 No.8 , August 2017
Modelling Study of Magnetic Field Effect on the Performance of a Silicon Photovoltaic Module
Abstract: Solar Photovoltaic is a very promising solution that can greatly contribute in solving the increasing global energy demand. In both rural and urban areas, photovoltaic modules are in some instances installed close to telecommunication antennas or voltage transformers which generate important magnetic fields in their vicinity. The question is whether or not these magnetic fields affect the performances of the photovoltaic installations. This article presents a modelling study of external magnetic field effect on the electrical parameters of a photovoltaic module. The photocurrent, the photovoltage, the electric power, the series and the shunt resistances of the photovoltaic module, made up of ideal cells, are deduced from those of a silicon solar cell. Then, the I-V and P-V curves are plotted and the theoretical values of the electrical parameters of the photovoltaic module are deduced. The series and shunt resistances of the photovoltaic module are calculated using well known equations and the previous electrical parameters. The results show the negative effect of magnetic field on the performance of a solar photovoltaic module.
Cite this paper: Combari, D. , Zerbo, I. , Zoungrana, M. , Ramde, E. and Bathiebo, D. (2017) Modelling Study of Magnetic Field Effect on the Performance of a Silicon Photovoltaic Module. Energy and Power Engineering, 9, 419-429. doi: 10.4236/epe.2017.98028.
References

[1]   Koffi, H.A., Kakane, V.C.K., Kuditcher, A., Hugues, A.F., Adeleye, M.B. and Amuzu, J.K.A. (2015) Seasonal Variations in the Operating Temperature of Silicon Solar Panels in Southern Ghana. African Journal of Science, Technology, Innovation and Development, 7, 485-490.
https://doi.org/10.1080/20421338.2015.1038006

[2]   Dia, F., Mbengue, N., Diagne, M., Niasse, O. A., Ba, B. and Séne, C. (2016) Contribution to the Study of the Degradation of Modules PV in the Tropical Latitudes: Case of Senegal. Research Journal of Applied Sciences, Engineering and Technology, 12, 427-438.
https://doi.org/10.19026/rjaset.12.2383

[3]   Nema, S., Nema, R.K. and Agnihotri, G. (2010) Matlab/Simulink Based Study of Photo-voltaiccells/Module/Array and Their Experimental Verification. International Journal of Energy and Environment, 1, 487-500.

[4]   Asghar, S. B.and Singh, R. K. (2015) Simulink Based Analysis and Realization of Solar PV System. Energy and Power Engineering, 7, 546-555.
https://doi.org/10.4236/epe.2015.711051

[5]   Skoplaki, E. and Palyvos, J.A. (2009) On the Temperature Dependence of Photovoltaic Module Electrical Performance: A Review of Efficiency/Power Correlations. Solar Energy, 83, 614-624.
https://doi.org/10.1016/j.solener.2008.10.008

[6]   Alsayid, B.A., Alsadi, S.Y., Jallad, J.S. and Dradi, M.H. (2013) Partial Shading of PV System Simulation with Experimental Results. Smart Grid and Renewable Energy, 4, 429-435.
https://doi.org/10.4236/sgre.2013.46049

[7]   Boukebbous, S.E. and Kerdoun, D. (2015) Study, Modeling and Simulation of Pho-tovoltaic Panels under Uniform and Non-Uniform Illumination Conditions. Revue des Energies Renouvelables, 18, 257-268.

[8]   Siddiqui, R. and Bajpa, U. (2012) Deviation in the Performance of Solar Module under Climatic Parameter as Ambient Temperature and Wind Velocity in Composite Climate. International Journal of Renewable Energy Research, 2, 486-490.

[9]   Madougou, S., Made, F., Boukary, M. S. and Sissoko, G. (2007) I-V Characteristics for Bifacial Silicon Solar Cell Studied under a Magnetic Field. Advanced Materials Research, 18-19, 303-312.
https://doi.org/10.4028/www.scientific.net/AMR

[10]   Zerbo, I., Zoungrana, M., Sourabie, I., Ouedraogo A., Zouma B. and Bathiebo, D.J. (2015) External Magnetic Field Effect on Bifacial Silicon Solar Cell’s Electric Power and Conversion Efficiency. Turkish Journal of Physics, 39, 288-294.
https://doi.org/10.3906/fiz-1505-10

[11]   Zerbo, I., Zoungrana, M., Sourabie, I., Ouedraogo, A., Zouma, B. and Bathiebo, D.J. (2016) External Magnetic Field Effect on Bifacial Silicon Solar Cell’s Electrical Parameters. Energy and Power Engineering, 8, 146-151.
http://dx.doi.org/10.4236/epe.2016.83013

[12]   Zoungrana, M., Zerbo, I., Soro, B., Savadogo, M., Tiedrebeogo, S. and Bathiebo, D.J. (2017) The Effect of Magnetic Field Effect on the Efficiency of a Silicon Solar Cell under an Intense Light Concentration. Advances in Science and Technology Research Journal, 11, 133-138.
https://doi.org/10.12913/22998624/69699

[13]   Mbodji, S., Ly, I., Diallo, H.L., Dione, M.M., Diasse, O. and Sissoko, G. (2012) Modeling Study of N+/P Solar Cell Resistances from Single I-V Characteristic Curve Considering the Junction Recombination Velocity (Sf). Research Journal of Applied Sciences, Engineering and Technology, 4, 1-7.

[14]   Toure, F., Zoungrana, M., Zouma, B., Mbodji, S., Gueye, S., Diao, A. and Sissoko, G. (2012) Influence of Magnetic Field on Electrical Model and Electrical Parameters of a Solar Cell under Intense Multispectral Illumination. International Journal of Advances in Science and Technology, 5, 40-53.

[15]   Sané, M. and Barro, F.I. (2015) Effect of Both Magnetic Field and Doping Density on Series and Shunt Resistances under Frequency Modulation. Indian Journal of Pure and Applied Physics, 53, 590-595.

[16]   Koffi, H.A., Kuditcher, A., Kakane, V.C.K., Armah, E.A., Yankson, A.A. and Amuzu, J.K.A. (2015) The Shockley Five-Parameter Model of a Silicon Solar Cell: A Short Note. African Journal of Science, Technology, Innovation and Development, 7, 491-494.
http://dx.doi.org/10.1080/20421338.2015.1038007

[17]   Sow, O., Zerbo, I., Mbodji, S., Ngom, M.I., Diouf, M.S. and Sissoko, G. (2012) Silicon Solar Cell Under Electromagnetic Waves in Steady State: Electrical Parameters Determination Using the I-V and P-V Characteristics. International Journal of Science Environment and Technology, 1, 230-246.

[18]   Abdul Kareem, M.S. and Saravanan, M. (2016) A New Method for Accurate Estimation of PV Module Parameters and Extraction of Maximum Power Point under Varying Environmental Conditions. Turkish Journal of Electrical Engineering and Computer Sciences, 24, 2028-2041.
https://doi.org/10.3906/elk-1312-268

 
 
Top