OJD  Vol.6 No.3 , August 2017
Can We Find Any Sustained Neurofunctional Alteration in Remitted Depressive Patients with a History of Modified Electroconvulsive Therapy?
Abstract: Background and Aim: Recent magnetic resonance imaging (MRI) studies have revealed structural and functional differences in the human brain before and after an electroconvulsive therapy (ECT) series in patients with depression. The hippocampus is one of the well-documented subcortical areas that show an increase in cortical volume following an ECT series. Moreover, some resting-state functional MRI studies have shown that an ECT series alters the connectivities of the hippocampus with several brain areas. However, it remains unknown whether ECT can induce some sustained neurofunctional alterations in the human brain. Methods: In this study of the depressive patients with and without a history of modified ECT (N = 5 and 9, respectively) using a cross-sectional design, we investigated the functional connectivity between the left and right hippocampi in terms of blood-oxygenation-level dependent signal changes with time by resting-state functional MRI. Results: Voxel-based morphometry showed no significant structural differences in hippocampal volume between the ECT and non-ECT groups. The ECT group showed a significantly lower functional connectivity between the same brain areas than the non-ECT group (p < 0.01). Conclusions: Although their clinical significance remains unclear, our results suggest that an ECT series induces a sustained neurofunctional alteration in the human brain.
Cite this paper: Saito, R. , Fujihara, K. , Kasagi, M. , Motegi, T. , Suzuki, Y. , Narita, K. , Ujita, K. and Fukuda, M. (2017) Can We Find Any Sustained Neurofunctional Alteration in Remitted Depressive Patients with a History of Modified Electroconvulsive Therapy?. Open Journal of Depression, 6, 89-99. doi: 10.4236/ojd.2017.63007.

[1]   Abbott, C. C., Jones, T., Lemke, N. T., Gallegos, P., McClintock, S. M., Mayer, A. R., & Calhoun, V. D. (2014). Hippocampal Structural and Functional Changes Associated with Electroconvulsive Therapy Response. Translational Psychiatry, 4, e483.

[2]   American Psychiatric Association (2000). Diagnostic and Statistical Manual of Mental Disorders (4th Editon, text rev.). Washington, DC: Author.

[3]   Bell-McGinty, S., Butters, M. A., Meltzer, C. C., Greer, P. J., Reynolds, C. F., & Becker, J. T. (2002). Brain Morphometric Abnormalities in Geriatric Depression: Long-Term Neurobiological Effects of Illness Duration. American Journal of Psychiatry, 159, 1424-1427.

[4]   Bodnar, A., Krzywotulski, M., Lewandowska, A., Chlopocka-Wozniak, M., Bartkowska-Sniatkowska, A., Michalak, M., & Rybakowski, J. K. (2016). Electroconvulsive Therapy and Cognitive Functions in Treatment-Resistant Depression. The World Journal of Biological Psychiatry, 17, 159-164.

[5]   Cox, R. W. (1996). AFNI: Software for Analysis and Visualization of Functional Magnetic Resonance Neuroimages. Computers and Biomedical Research, 29, 162-173.

[6]   Dukart, J., Regen, F., Kherif, F., Colla, M., Bajbouj, M., Heuser, I., & Draganski, B. (2014). Electroconvulsive Therapy-Induced Brain Plasticity Determines Therapeutic Outcome in Mood Disorders. Proceedings of the National Academy of Sciences of the United States of America, 111, 1156-1161.

[7]   Duman, R. S. (2004). Depression: A Case of Neuronal Life and Death? Biological Psychiatry, 56, 140-145.

[8]   Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). Mini-Mental State: A Practical Method for Grading the Cognitive State of Patients for the Clinician. Journal of Psychiatric Research, 12, 189-198.

[9]   Goto, K., Kurashima, R., Gokan, H., Inoue, N., Ito, I., & Watanabe, S. (2010). Left-Right Asymmetry Defect in the Hippocampal Circuitry Impairs Spatial Learning and Working Memory in iv Mice. PLoS ONE, 5, e15468.

[10]   Hamilton, M. (1967). Development of a Rating Scale for Primary Depressive Illness. British Journal of Social and Clinical Psychology, 6, 278-296.

[11]   Ideno, Y., Takayama, M., Hayashi, K., Takagi, H., & Sugai, Y. (2012). Evaluation of a Japanese Version of the Mini-Mental State Examination in Elderly Persons. Geriatrics & Gerontology International, 12, 310-316.

[12]   Jorgensen, A., Magnusson, P., Hanson, L. G., Kirkegaard, T., Benveniste, H., Lee, H., Jorgensen, M. B. et al. (2016). Regional Brain Volumes, Diffusivity, and Metabolite Changes after Electroconvulsive Therapy for Severe Depression. Acta Psychiatrica Scandinavica, 133, 154-164.

[13]   Kim, J. J., & Diamond, D. M. (2002). The Stressed Hippocampus, Synaptic Plasticity and Lost Memories. Nature Reviews. Neuroscience, 3, 453-462.

[14]   Mervaala, E., Föhr, J., Könönen, M., Valkonen-Korhonen, M., Vainio, P., Partanen, K., Lehtonen, J. et al. (2000). Quantitative MRI of the Hippocampus and Amygdala in Severe Depression. Psychological Medicine, 30, 117-125.

[15]   Michael, N., Erfurth, A., Ohrmann, P., Arolt, V., Heindel, W., & Pfleiderer, B. (2003). Metabolic Changes within the Left Dorsolateral Prefrontal Cortex Occurring with Electroconvulsive Therapy in Patients with Treatment Resistant Unipolar Depression. Psychological Medicine, 33, 1277-1284.

[16]   Nordanskog, P., Larsson, M. R., Larsson, E. M., & Johanson, A. (2014). Hippocampal Volume in Relation to Clinical and Cognitive Outcome after Electroconvulsive Therapy in Depression. Acta Psychiatrica Scandinavica, 129, 303-311.

[17]   Oldfield, R. C. (1971). The Assessment and Analysis of Handedness: The Edinburgh Inventory. Neuropsychologia, 9, 97-113.

[18]   Ota, M., Noda, T., Sato, N., Okazaki, M., Ishikawa, M., Hattori, K., Kunugi, H. et al. (2015). Effect of Electroconvulsive Therapy on Gray Matter Volume in Major Depressive Disorder. Journal of Affective Disorders, 186, 186-191.

[19]   Park, H. G., Yu, H. S., Park, S., Ahn, Y. M., Kim, Y. S., & Kim, S. H. (2014). Repeated Treatment with Electroconvulsive Seizures Induces HDAC2 Expression and Down-Regulation of NMDA Receptor-Related Genes through Histone Deacetylation in the Rat Frontal Cortex. The International Journal of Neuropsychopharmacology, 17, 1487-1500.

[20]   Sapolsky, R. M. (2004). Is Impaired Neurogenesis Relevant to the Affective Symptoms of Depression? Biological Psychiatry, 56, 137-139.

[21]   Snyder, J. S., Soumier, A., Brewer, M., Pickel, J., & Cameron, H. A. (2011). Adult Hippocampal Neurogenesis Buffers Stress Responses and Depressive Behaviour. Nature, 476, 458-461.

[22]   Steffens, D. C., Byrum, C. E., McQuoid, D. R., Greenberg, D. L., Payne, M. E., Blitchington, T. F., Krishnan, K. R. R. et al. (2000). Hippocampal Volume in Geriatric Depression. Biological Psychiatry, 48, 301-309.

[23]   Videbech, P., & Ravnkilde, B. (2004). Hippocampal Volume and Depression: A Meta-Analysis of MRI Studies. The American Journal of Psychiatry, 161, 1957-1966.

[24]   Wilson, D. H., Culver, C., Waddington, M., & Gazzaniga, M. (1975). Disconnection of the Cerebral Hemispheres. An Alternative to Hemispherectomy for the Control of Intractable Seizures. Neurology, 25, 1149-1153.