JDM  Vol.7 No.3 , August 2017
Effect of Initiation of Basal Insulin Glargine on Glycemic Control in Patients with Diabetes: Real Life Experience from Hong Kong
Introduction: To assess the changes in glycemic control after initiating or switching to a basal insulin analogue in patients with diabetes mellitus. Methods: A retrospective, observational analysis was conducted using electronic data from a Hong Kong regional hospital. Data from adult patients with type 1 and 2 diabetes mellitus (T1DM and T2DM, respectively) who had been prescribed with basal insulin glargine in 2008-2010, with recorded HbA1c levels at the time of initiation, at 6 and 12 months thereafter, were analysed. Results: Data from 106 eligible patients were analysed. Substantial reduction in HbA1c and fasting sugar levels were reported in both T1DM (Δ HbA1c = 1.5%, Δ FBG = 1.3 mmol/L p < 0.05) and T2DM (Δ HbA1c = 1.2%, Δ FBG = 2.9 mmol/L p < 0.05) patients after 12 months of therapy. A total of 42% of T1DM and 26% of T2DM patients achieved HbA1c levels < 7.0%. After adjustment, T2DM patients who were insulin naive achieved a statistically greater HbA1c reduction (Δ = 1.7%) than those who previous treated with premixed or basal bolus insulin (Δ = 0.3%) (p < 0.05). Percentage of patients experiencing hypoglycaemia reduced from 69% to 62% in T1DM but increased from 26% to 36% in T2DM patients. All hypoglycaemic episodes recorded were either asymptomatic or mild and self-limiting. Only 4% of the patients discontinued treatment at the end of 12 months. Conclusions: In real life clinical practice, a single daily basal insulin analogue therapy provided effective glycemic control with an acceptable risk of mild hypoglycaemia.
Cite this paper: Yeung, C. , Fhkam, F. , Ngai, W. and Lau, I. (2017) Effect of Initiation of Basal Insulin Glargine on Glycemic Control in Patients with Diabetes: Real Life Experience from Hong Kong. Journal of Diabetes Mellitus, 7, 108-120. doi: 10.4236/jdm.2017.73009.

[1]   Chan, J.C., Malik, V., Jia, W., Kadowaki, T., Yajnik. C.S., Yoon, K.H., et al. (2009) Diabetes in Asia: Epidemiology, Risk Factors, and Pathophysiology. The Journal of the American Medical Association, 301, 2129-2140.

[2]   Unwin, N., Gan, D. and Whiting, D. (2010) The IDF Diabetes Atlas: Providing Evidence, Raising Awareness and Promoting Action. Diabetes Research and Clinical Practice, 87, 2-3.

[3]   Chan, B.S., Tsang, M.W., Lee, V.W. and Lee, K.K. (2007) Cost of Type 2 Diabetes Mellitus in Hong Kong Chinese. International Journal of Clinical Pharmacology and Therapeutics, 45, 455-468.

[4]   Chatterji, S., Kowal, P., Mathers, C., Naidoo, N., Verdes, E., Smith, J.P., et al. (2008) The Health of Aging Populations in China and India. Health Affairs (Millwood), 27, 1052-1063.

[5]   Cockram, C.S., Woo, J., Lau, E., Chan, J.C., Chan, A.Y., Lau, J., et al. (1993) The Prevalence of Diabetes Mellitus and Impaired Glucose Tolerance among Hong Kong Chinese Adults of Working Age. Diabetes Research and Clinical Practice, 21, 67-73.

[6]   Prince of Wales Hospital Charitable Foundation (2016) Health Feature—Diabetes Mellitus.

[7]   Tsang, L.W.W. and Chan, N.N. (2012) Insulin Therapy: A Practical Approach. The Hong Kong Medical Diary, 17, 10-12.

[8]   Huen, K.F., Low, L.C.K., Cheung, P.T., Wong, G.W.K., But, W.M., Kwan, E.Y.W., et al. (2009) An Update on the Epidemiology of Childhood Diabetes in Hong Kong. Hong Kong Journal of Paediatrics, 14, 252-259.

[9]   The Diabetes Control and Complications (DCCT) Research Group (1995) Effect of Intensive Therapy on the Development and Progression of Diabetic Nephropathy in the Diabetes Control and Complications Trial. Kidney International, 47, 1703-1720.

[10]   Shichiri, M., Kishikawa, H., Ohkubo, Y. and Wake, N. (2000) Long-Term Results of the Kumamoto Study on Optimal Diabetes Control in Type 2 Diabetic Patients. Diabetes Care, 23(Suppl 2), B21-B29.

[11]   Inzucchi, S.E., Bergenstal, R.M., Buse, J.B., Diamant, M., Ferrannini, E., Nauck, M., et al. (2015) Management of Hyperglycemia in Type 2 Diabetes, 2015: A Patient-Centered Approach Update to a Position Statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care, 38, 140-149.

[12]   Maheux, P., Chen, Y.D., Polonsky, K.S. and Reaven, G.M. (1997) Evidence That Insulin Can Directly Inhibit Hepatic Glucose Production. Diabetologia, 40, 1300-1306.

[13]   Bazzano, L.A., Lee, L.J., Shi, L., Reynolds, K., Jackson, J.A. and Fonseca, V. (2008) Safety and Efficacy of Glargine Compared with NPH Insulin for the Treatment of Type 2 Diabetes: A Meta-Analysis of Randomized Controlled Trials. Diabetic Medicine, 25, 924-932.

[14]   Rosenstock, J., Davies, M., Home, P.D., Larsen, J., Koenen, C. and Schernthaner, G.A. (2008) Randomised, 52-Week, Treat-to-Target Trial Comparing Insulin Detemir with Insulin Glargine when Administered as Add-On to Glucose-Lowering Drugs in Insulin-Naive People with Type 2 Diabetes. Diabetologia, 51, 408-416.

[15]   Swinnen, S.G., Simon, A.C., Holleman, F., Hoekstra, J.B. and Devries, J.H. (2011) Insulin Detemir versus Insulin Glargine for Type 2 Diabetes Mellitus. Cochrane Database of Systematic Reviews, 7, Article ID: CD006383.

[16]   Cramer, J.A. and Pugh, M.J. (2005) The Influence of Insulin Use on Glycemic Control: How Well Do Adults Follow Prescriptions for Insulin? Diabetes Care, 28, 78-83.

[17]   Lee, W.C., Balu, S., Cobden, D., Joshi, A.V. and Pashos, C.L. (2006) Medication Adherence and the Associated Health-Economic Impact among Patients with Type 2 Diabetes Mellitus Converting to Insulin Pen Therapy: An Analysis of Third-Party Managed Care Claims Data. Clinical Therapeutics, 28, 1712-1725.

[18]   Sharplin, P., Gordon, J., Peters, J.R., Tetlow, A.P., Longman, A.J. and McEwan, P. (2009) Improved Glycaemic Control by Switching from NPH to Glargine a Retrospective Observational Study. Cardiovascular Diabetology, 8, 3.

[19]   Sharplin, P., Gordon, J., Peters, J.R., Tetlow, A.P., Longman, A.J. and McEwan, P. (2009) Switching from Premixed Insulin to Glargine-Based Insulin Regimen Improves Glycaemic Control in Patients with Type 1 or Type 2 Diabetes. Cardiovascular Diabetology, 8, 9.

[20]   Currie, C.J., Poole, C.D., Tetlow, T., Holmes, P. and McEwan, P. (2007) The Outcome of Care in People with Type 1 and Type 2 Diabetes Following Switching to Treatment with either Insulin Glargine or Insulin Detemir in Routine General Practice in the UK: A Retrospective Database Analysis. Current Medical Research and Opinion, 23, S33-S39.

[21]   Garg, S.K., Gottlieb, P.A., Hisatomi, M.E., D’Souza, A., Walker, A.J., Izuora, K.E., et al. (2004) Improved Glycemic Control without an Increase in Sever Hypoglycemic Episodes in Intensively Treated Patients with Type 1 Diabetes Receiving Morning, Evening, or Split Dose Insulin Glargine. Diabetes Research and Clinical Practice, 66, 49-56.

[22]   Brown, J.B., Nichols, G.A. and Perry, A. (2004) The Burden of Treatment Failure in Type 2 Diabetes. Diabetes Care, 27, 1535-1540.

[23]   Gabriely, I. and Shamoon, H. (2007) Awakening from Sleep and Hypoglycaemia in Type 1 Diabetes Mellitus. PLOS Medicine, 4, e99.

[24]   Swinnen, S.G., Hoekstra, J.B. and De Vries, J.H. (2009) Insulin Therapy for Type 2 Diabetes. Diabetes Care, 32, S253-S259.

[25]   Home, P. (2006) Global Guideline for Type 2 Diabetes: Recommendations for Standard, Comprehensive, and Minimal Care. Diabetic Medicine, 23, 579-593.

[26]   H.O.E. Study Investigators Group (2003) Safety and Efficacy of Insulin Glargine (HOE 901) versus NPH Insulin in Combination with Oral Treatment in Type 2 Diabetic Patients. Diabetic Medicine, 20, 545-551.

[27]   Chan, J.C., Gagliardino, J.J., Baik, S.H., Chantelot, J.M., Ferreira, S.R., Hancu, N., et al. (2009) Multifaceted Determinants for Achieving Glycemic Control: The International Diabetes Management Practice Study (IDMPS). Diabetes Care, 32, 227-233.

[28]   Rosenstock, J., Schwartz, S.L., Clark, C.M., Jr. Park, G.D., Donley, D.W., et al. (2001) Basal Insulin Therapy in Type 2 Diabetes: 28-Week Comparison of Insulin Glargine (HOE 901) and NPH Insulin. Diabetes Care, 24, 631-636.

[29]   Tsai, S.T., Pathan, F., Ji, L., Yeung, V.T., Chadha, M., Suastika, K., et al. (2011) First Insulinization with Basal Insulin in Patients with Type 2 Diabetes in a Real-World Setting in Asia. Journal of Diabetes, 3, 208-216.

[30]   Peyrot, M., Rubin, R.R., Lauritzen, T., Skovlund, S.E., Snoek, F.J., Matthews, D.R., et al. (2005) Resistance to Insulin Therapy among Patients and Providers: Results of the Cross-National Diabetes Attitudes, Wishes, and Needs (DAWN) Study. Diabetes Care, 28, 2673-2679.

[31]   Davies, M.J., Gagliardino, J.J., Gray, L.J., Khunti, K., Mohan, V. and Hughes, R. (2013) Real-World Factors Affecting Adherence to Insulin Therapy in Patients with Type 1 or Type 2 Diabetes Mellitus: A Systematic Review. Diabetic Medicine, 30, 512-524.

[32]   Witthaus, E., Stewart, J. and Bradley, C. (2001) Treatment Satisfaction and Psychological Well-Being with Insulin Glargine Compared with NPH in Patients. Diabetic Medicine, 18, 619-625.