AS  Vol.8 No.7 , July 2017
Microbial Carbon, Mineral-N and Soil Nutrients in Indigenous Agroforestry Systems and Other Land Use in the upper Solimões Region, Western Amazonas State, Brazil
Abstract: Slash and burn cultivation systems carried out by many farmers in the Amazon region lead to changes in biogeochemical cycles of nutrients. To assess the extent of the impact of shifting cultivation on the soil in a floodplain portion of this region, samples of an Inceptisol surface layer (0 - 5 cm) under primary forest (FP), secondary forest at an advanced stage of recovery (FS), secondary forest at an initial stage of recovery (CAP), agroforestry (SAF), plantations (R?) in indigenous communities and small farmers, and pasture (PAS) in the Upper Solim?es region, Amazonas, were subjected to analysis of chemical composition during the wet (May) and dry (October) seasons, 2007. Soils were fertile with levels of P, K, Ca and Mg above those generally found in Amazon soils. Microbial content did not vary significantly in the systems studied in the wet season, but there was a reduction of around 60% with the change of season, except for soils with SAF. Ammonium nitrogen was predominant in all systems and seasons studied. Nitrate content was higher in R? soil, in two seasons, and lower in PAS. The type of management adopted by farmers in the region’s indigenous agroforestry systems resulted in small changes in P, K, Mg, MBC and mineral-N levels, independent of soil moisture.
Cite this paper: Tunes Villani, F. , Aguiar Ribeiro, G. , Albuquerque Villani, E. , Geraldes Teixeira, W. , Souza Moreira, F. , Miller, R. and Sena Alfaia, S. (2017) Microbial Carbon, Mineral-N and Soil Nutrients in Indigenous Agroforestry Systems and Other Land Use in the upper Solimões Region, Western Amazonas State, Brazil. Agricultural Sciences, 8, 657-674. doi: 10.4236/as.2017.87050.

[1]   Alfaia, S.S., Ribeiro, G.A., Nobre, A.N., Luizão, R.C. and Luizão, F.J. (2004) Evaluation of Soil Fertility in Smallholder Agroforestry Systems and Pastures in Western Amazonia. Agriculture, Ecosystems and Environment, 102, 409-414.

[2]   Joslin, A.H., Markewitz, D., Morris, L.A., Oliveira, F.A., Figueiredo, R.O. and Kato, O.R. (2011) Five Native Tree Species and Manioc under Slash-and-Mulch Agroforestry in the Eastern Amazon of Brazil: Plant Growth and Soil Response. Agroforestry Systems, 81, 1-14.

[3]   Schloter, M., Dilly, O. and Munch, J.C. (2003) Indicators for Evaluating Soil Quality. Agriculture, Ecosystems and Environment, 98, 255-262.

[4]   Swift, M.J. and Woomer, P.L. (1993) Organic Matter and the Sustainability of Agricultural Systems: Definition and Measurement. In: Mulongoy, K. and Merckx, R. Eds., Soil Organic Matter Dynamics and Sustainability of Tropical Agriculture, IITA, Leuven, 3-18.

[5]   Bastida, F., Zsolnay, A., Hernández, T. and García, C. (2008) Past, Present and Future of Soil Quality Indices: A Biological Perspective. Geoderma, 147, 159-171.

[6]   Gama-Rodrigues, E.F., Barros, N.F., Gama-Rodrigues, A.C. and Santos, G.A. (2005) Nitrogênio, carbono e atividade da biomassa microbiana do solo em plantaçoes de eucalipto. Revista Brasileira de Ciência do Solo, 29, 893-902.

[7]   Jenkinson, D.S. and Ladd, J.M. (1981) Microbial Biomass in Soil: Measurement and Turnover. In: Paul, E.A. and Ladd, J.M., Eds., Soil Biochemistry, Dekker, New York, 415-471.

[8]   Smith, J.L. and Paul, E.A. (1990) The Significance of Soil Microbial Biomass Estimations. In: Bollag, J. and Stotzky, J.D.G., Eds., SOIL Biochemistry, Dekker, New York, 357-396.

[9]   Moreira, F.M.S. and Siqueira, J.O. ( 2006) Microbiologia e bioquímica do solo, Universidade Federal de Lavras, Lavras, Minas Gerais.

[10]   Dinesh, R., Chaudhuri, S.G., Ganeshamurthy, A.N. and Dey, C. (2003) Changes in Soil Microbial Indices and Their Relationships Following Deforestation and Cultivation in Wet Tropical Forest. Applied Soil Ecology, 24, 17-23.

[11]   Fernandes, F.A., Fernandes, A.H. and Crispim, S.M.A. (2007) Biomassa microbiana e conteúdos de carbono e nitrogênio do solo em áreas de pastagem nativa sujeita à queimada, Pantanal Mato-Grossense. Boletim de Pesquisa e Desenvolvimento, 73. Embrapa Pantanal, Corumbá.

[12]   Silva, R.R., Silva, M.L.N., Cardoso, E.L., Moreira, F.M.S., Curi, N. and Alovisi, A.M.T. (2010) Biomassa e atividade microbiana em solo sob diferentes sistemas de manejo na região fisiográfica Campos das Vertentes-MG. Revista Brasileira de Ciência do Solo, 34, 1584-1592.

[13]   Luizão, R.C.C., Luizão, F.J., Paiva, R.Q., Monteiro, T.F., Sousa, L.S. and Kruijt, B. (2004) Variation of Carbon and Nitrogen Cycling Processes along a Topographic Gradient in a Central Amazonian Forest. Global Change Biology, 10, 592-600.

[14]   Cleveland, C.C., Townsend, A.R., Constance, B.C., Ley, R.E. and Schmidt, S.K. (2004) Soil Microbial Dynamics in Costa Rica: Seasonal and Biogeochemical Constraints. Biotropica, 36, 184-195.

[15]   Coelho, M.R., Fidalgo, E.C.C., Araújo, F.O., Santos, H.G., Santos, M.L., Pérez, D.V. and Moreira, F.M.S. (2005) Solos das áreas-piloto do Projeto GEF BIOS (Conservation and Sustainable Management of Below-Ground Biodiversity: Phase I), Município de Benjamin Constant, Estado do Amazonas. Embrapa Solos, Rio de Janeiro. Boletim de Pesquisa e Desenvolvimento, 67.

[16]   Biosbrasil (2005)

[17]   Fidalgo, E.C.C., Coelho, M.R., Araújo, F.O., Moreira, F.M.S., Santos, H.G., Santos, M.L. and Huising, J. (2005) Levantamento do Uso e Cobertura da Terra de Seis áreas Amostrais Relacionadas ao Projeto BiosBrasil (Conservation and Sustainable Management of Below-Ground Biodiversity: Phase I), Município de Benjamin Constant (AM). Embrapa Solos, Rio de Janeiro. Boletim de Pesquisa e Desenvolvimento, 71.

[18]   Yeomans, J.C. and Bremner, J.M. (1988) A Rapid and Precise Method for Routine Determination of Organic Carbon in Soil. Communication in Soil Science and Plant Analyses, 19, 1467-1476.

[19]   Empresa Brasileira de Pesquisa Agropecuária-Embrapa (1999) Serviço Nacional de Levantamento e Conservação de Solos. Manual de análises químicas de solos, plantas e fertilizantes. Embrapa Comunicação para Transferência de Tecnologia, Brasília, 370.

[20]   Empresa Brasileira de Pesquisa Agropecuária-Embrapa (1997) Serviço Nacional de Levantamento e Conservação de Solos. Manual de métodos de análise de solo. 2nd Edition, Embrapa Produção de Informação, Rio de Janeiro, 212.

[21]   Vance, E.D., Brookes, P.C. and Jenkinson, D.S. (1987) Microbial Biomass Measurements in Forest Soil: Determination of Kc Values and Tests of Hypotheses to Explain the Failure of the Chloroform Fumigation Method in Acid Soils. Soil Biology and Biochemistry, 19, 703-707.

[22]   Joergensen, R.G. and Brookes, P.C. (1990) Ninhydrin-Reactive Nitrogen Measurements of Microbial Biomass in 0.5 mol L-1 K2SO4 Soils Extracts. Soil Biology and Biochemistry, 22, 1023-1027.

[23]   Sparling, G.P. (1992) Ratio of Microbial Biomass Carbon to Soil Organic Carbon as a Sensitive Indicator of Changes in Soil Organic Matter. Australian Journal of Soil Research, 30, 195-207.

[24]   SYSTAT Software (2002) SYSTAT 10 for Windows. SYSTAT Software, Richmond.

[25]   Thioulouse, J., Chessel, D., Dolédec, S. and Oliver, J.M. (1997) ADE4 Multivariate Analysis and Graphical Display Software. Statistical Computation, 7, 2-15.

[26]   Diaz, L. (2002) Estadistica Multivariada: Inferencia y metodos. Universidad Nacional de Colombia, Bogotá.

[27]   Lima, H.N., Mello, J.W.V., Schaefer, C.E.G.R., Ker, J.C. and Lima, A.M.N. (2006) Mineralogia e química de três solos de uma topossequência da bacia sedimentar do Alto Solimoes, Amazonia Ocidental. Revista Brasileira de Ciência do Solo, 30, 59-68.

[28]   Moreira, A. and Fageria, N.K. (2009) Soil Chemical Attributes of Amazonas State, Brazil. Communications in Soil Science and Plant Analysis, 40, 1-14.

[29]   Pinho, R.C., Alfaia, S.S., Miller, R.P., Uguen, K., Magalhães, L.D., Ayres, M., Freitas, V. and Trancoso, R. (2011) Islands of Fertility: Soil Improvement under Indigenous Homegardens in the Savannas of Roraima, Brazil. Agroforestry Systems, 81, 235-247.

[30]   Cochrane, T.T., Sánchez, L.G., Azevedo, L.G., Porras, J.A. and Garver, C.L. (1985) Land in Tropical America. 3v, CIAT/EMBRAPA/CPAC, Brasília.

[31]   McGrath, D.A., Smith, C.K., Gholz, H.L. and Oliveira, F.A. (2001) Effects of Land-Use Change on Soil Nutrient Dynamics in Amazonia. Ecosystems, 4, 625-645.

[32]   Farella, N. Davidson, R., Lucotte, M. and Daigle, S. (2007) Nutrient and Mercury Variations in Soils from Family Farms of the Tapajós Region (Brazilian Amazon): Recommendations for Better Farming. Agriculture, Ecosystems and Environment, 120, 449-462.

[33]   Cenciani, K., Lambais, M.R., Cerri, C.C., Azevedo, L.C.B. and Feigl, B.J. (2009) Bacteria Diversity and Microbial Biomass in Forest, Pasture and Fallow Soils in the Southwestern Amazon Basin. Revista Brasileira de Ciência do Solo, 33, 907-916.

[34]   Numata, I., Chadwick, O.A., Roberts, D.A., Schimel, J.P., Sampaio, F.F., Leonidas, F.C. and Soares, J.V. (2007) Temporal Nutrient Variation in Soil and Vegetation of Post-Forest Pastures as a Function of Soil Order, Pasture Age, and Management, Rondonia, Brazil. Agriculture, Ecosystems and Environment, 118, 159-172.

[35]   Nair, P.K.R., Buresh, R.J. and Latt, C.R. (1999) Nutrient Cycling in Tropical Agroforestry Systems: Myths and Science. In: Buck, I.E. and Fernandes, E.C.M., Eds., Agroforestry in Sustainable Agricultural Systems, Washington DC, 1-31.

[36]   Pinho, R.C., Miller, R.P. and Alfaia, S.S. (2012) Agroforestry and the Improvement of Soil Fertility: A View from Amazonia. Applied Environmental Soil Science, 12, 1-11.

[37]   Salim, M.V.C. (2012) Quintais agroflorestais em área de terra-firme na Terra Indígena Kwatá-Laranjal, Amazonas. Dissertação de Mestrado, INPA/UFAM.

[38]   Cabrera, L.T. (2009) Dinamica da Matéria Organica do Solo em Ecossistemas de Floresta Secundárias sobre solos Antropogênicos e não Antropogênicos (Adjacentes) na Amazonia Central, Tese de Doutorado. INPA/UFAM. Manaus.

[39]   Giardina, C.P., Sanford, R.L., Dockersmith, I.C. and Jaramillo, V.J. (2000) The Effects of Slash Burning on Ecosystem Nutrients during the Land Preparation Phase of Shifting Cultivation. Plant and Soil, 220, 247-260.

[40]   Mabuhay, J.A., Nakagoshi, N. and Horikoshi, T. (2003) Microbial Biomass and Abundance after Forest Fire in Pine Forest in Japan. Ecological Research, 18, 431-441.

[41]   Luizão, F.J., Proctor, J., Thompson, J., Luizão, R.C.C., Mars, R.H., Scott, D.A. and Viana, V. (1998) Rain Forest on Maraca Island, Roraima, Brazil: Soil and Litter Process Response to Artificial Gaps. Forest Ecology and Management, 102, 291-303.

[42]   Henrot, J. and Robertson, D.G.P. (1994) Vegetation Removal in Two Soils of the Humid Tropics: Effect on Microbial Biomass. Soil Biology and Biochemistry, 26, 111-116.

[43]   Eaton, W.D. (2001) Microbial and Nutrient Activity in Soils from Three Different Subtropical Forest Habitats in Belize, Central America before and during the Transition from Dry to Wet Season. Applied Soil Ecology, 16, 219-227.

[44]   Galicia, L. and Garcia-Oliva, F. (2004) The Effects of C, N and P Additions on Soil Microbial Activity under Two Remnant Tree Species in a Tropical Seasonal Pasture. Applied Soil Ecology, 26, 31-39.

[45]   Galicia, L. and Garcia-Oliva, F. (2008) Remnant Tree Effects on Soil Microbial Carbon and Nitrogen Tropical Seasonal Pasture in Western Mexico. European Journal of Soil Biology, 44, 290-297.

[46]   Luizão, R.C.C., Bonde, T.A. and Rosswall, T. (1992) Seasonal Variation of Soil Microbial Biomass—The Effects of Clear Felling a Tropical Rainforest and Establishment of Pasture in the Central Amazon. Soil Biology and Biochemistry, 24, 805-813.

[47]   Bauhus, J., Khanna, P.K. and Raison, R.J. (1993) Mineralization and Nitrification in an Australian Forest Soil. Australian Journal of Soil Research, 31, 621-639.

[48]   Wardle, D.A. and Ghani, A. (1995) A Critique of the Microbial Metabolic Quotient (qCO2) as a Bio Indicator of Disturbance and Ecosystem Development. Soil Biology and Biochemistry, 27, 1601-1610.

[49]   Diaz-Ravina, M., Acea, M.J. and Carballas, T. (1995) Seasonal Changes in Microbial Biomass and Nutrient Flush in Forest Soils. Biology and Fertility of Soils, 19, 220-226.

[50]   Moreira, A. and Costa, D.G. (2004) Dinamica da matéria organica na recuperação de clareiras da floresta amazonica. Pesquisa Agropecuária Brasileira, 39, 1013-1019.

[51]   Silver, W.L., Neff, J., Veldkamp, E., McGroddy, M., Keller, M. and Cosme, R. (2000) The Effects of Soil Texture on Below-Ground Carbon and Nutrient Storage in a Lowland Amazonian Forest Ecosystem. Ecosystems, 3, 193-209.

[52]   Sotta, E.D., Corre, M.D. and Veldkamp, E. (2008) Differing N Status and N Retention Processes of Soils under Old-Growth Lowland Forest in Eastern Amazonia, Caxiuanã, Brazil. Soil Biology and Biochemistry, 40, 740-750.

[53]   Moreira, F.M.S., Nóbrega, R.S.A., Jesus, E.C., Ferreira, D.F. and Pérez, D.V. (2009) Differentiation in the Fertility of Inceptisols as Related to Land Use in the Upper Solimoes River Region, Western Amazon. Science of the Total Environment, 408, 349-355.

[54]   Smith, C.K., Gholz, H.L. and Oliveira, F.A. (1998) Fine Litter Chemistry, Early-Stage Decay, and Nitrogen Dynamics under Plantations and Primary Forest in Lowland Amazonia. Soil Biology and Biochemistry, 30, 2159-2169.

[55]   Fernandes, S.A.P. (1999) Propriedades do solo na conversão de floresta em pastagem fertilizada e não fertilizada com fósforo na Amazonia, (Rondonia). Tese de Doutorado. Centro de Energia Nuclear na Agricultura. Universidade de São Paulo, Piracicaba, São Paulo.

[56]   Alfaia, S.S., Jacquin, F. and Guiraud, G. (1995) Transformation of Nitrogen Fertilizers in Brazilian Amazonia Soils. Arid Soils Research and Rehabilitation, 9, 335-340.