Back
 JBM  Vol.5 No.7 , July 2017
Evaluation of Cytotoxicity of Gossypium barbadense L. Extract in Bone Cord Cells through the Micronucleus Test
Abstract: The cotton plant is a plant belonging to the family Malvaceae and its leaves are often used in folk medicine. The present study aimed to evaluate the mutagenic or antimutagenic activity of the ethanolic extract of Gossypium barbadense L. (EEG) and to analyze its capacity to prevent or repair mutagenic lesions caused by cyclophosphamide (CP). For the Micronucleus test, Swiss mice were divided into 5 groups: negative control; Positive control: treated with 50 mg/kg cyclophosphamide (CP), group receiving EEG 500 mg/kg for 7 days; Group receiving EEG 500 mg/kg for 7 days associated with CP24h before euthanasia; Group who received CP and EEG 500 mg/kg for 7 days. After the treatment period, the animals were euthanized, the bone marrow removed and the blood smear prepared. From this analysis, it was observed that the EEG caused a significant increase in the number of micronucleated erythrocytes, indicating mutagenic activity of the extract. In addition, it was verified that the extract did not present the capacity to prevent, but it presented the capacity of repair of the chromosomal damages caused by CP.
Cite this paper: de Oliveira, T. , Rodrigues, J. , Miguel, T. , dos Anjos, N. , de Abreu, J. , Rocha, L. , Dias, R. , da Costa, D. (2017) Evaluation of Cytotoxicity of Gossypium barbadense L. Extract in Bone Cord Cells through the Micronucleus Test. Journal of Biosciences and Medicines, 5, 84-91. doi: 10.4236/jbm.2017.57008.
References

[1]   Rocha, F.A.G., Araújo, L.S.G., Lima, T.G.D., Silva, E.R., Silva, P.A., Gundim, M.K.M., Araújo, M.F.F. and Costa, N.D.L. (2013) Characteristics of the Informal Trade of Medicinal Plants in the Municipality of Lagoa Nova/RN. Holos, 5, 264-281. https://doi.org/10.15628/holos.2013.1344

[2]   Joly, A.B. (2002) Botany: Introduction to Plant Taxonomy. 13th Edition, Companhia Editora Nacional, Sao Paulo.

[3]   Brubaker, C.L., Bourland, F.M. and Wendel, J.F. (1999) The Origin and Domestication of Cotton. In: Smith, C.W. and Cothen, J.T., Eds., Cotton: Origin, History, Technology and Production. Johnston and Sounds, New York, 23-32.

[4]   Almeida, V.C., Pereira, G.S., Moura, M.A., Silva, R.A., Barroso, P.A.V., Hoffmann, L.V., Andrade, F.P. and Lamas, F.M. (2009) In Situ Characterization and Conservation of Germplasm of Gossypium barbadense L. (Malvaceae) in the State of Mato Grosso do Sul. In: Brazilian Cotton Congress, Foz do Iguacu. Sustainability of Brazilian Cotton Growing and Expansion of Markets: Annals. Embrapa Cotton, Campina Grande.

[5]   Borges, K.N., Noblick, L.R. and Lemos, M.J.S. (1986) Contribution to the Study of the Medicinal Flora of the Feira de Santana Micro-Region (BA). Sitientibus, 3, 101-116.

[6]   Coelho, L.A., Silva, S.L.C. and Macedo, G.E.L. (2010) Ethnobotanical Survey in the Community of Rio Preto do Criciúma, in the municipality of Jequié-BA: A Preliminary Analysis. Encyclopedia Biosphere, 6, 1-17.

[7]   Simon (2013) Chemical Composition, Efficacy and Toxicity of Medicinal Plants Used in the Treatment of Obesity. Thesis, Federal University of Lavras, Lavras.

[8]   Pais, V.A.A. (2011) Evaluation of In Vitro and In Vivo Anticancer Activity of Medicinal Plants from Serra da Mantiqueira Paulista. Dissertation, Federal University of Campinas, Campinas.

[9]   INCA. National Cancer Institute.
http://www.inca.gov.br/conteudo_view.asp?id=322

[10]   Silva, A.A. and Bohm, F.M.L.Z. (2012) Studies of the Effects of Agaricusblazei Tea (Sun Mushroom) on Mitotic Index of Allium Cepa (Onion) Meristematic Cells. Dialogues & Knowledge, 8, 25-39.

[11]   Rodrigues, H.G., Meireles, C.G., Lima, J.T.S., Toledo, G.P., Cardoso, J.L. and Gomes, S.L. (2011) Embryotoxic, Teratogenic and Abortive Effect of Medicinal Plants. Revista Brasileira de Plantas Medicinais, 13, 359-366.

[12]   Goncalves, C.D.P. (2012) Evaluation of the Genotoxic Damage to the DNA of Mice Exposed to Vegetables Grown on Controlled Deposits of Coal Tailings. Monograph, Faculty of Pharmacy of the University of Extremo Sul Catarinense, Crisciúma.

[13]   Fao, F., Zan, R.A., Brondani, F.M.M., Ramos, L.J. and Meneguetti, D.U.O. (2012) Analysis of the Mutagenic Potential of the Sap of the Crotonlechleri Bark (Müll. Arg), in the State of Rondonia, Western Amazonia. SaBios-Revista de Saúde e Biologia, 7, 91-98.

[14]   Adler, I.D. and Attia, S.M. (2003) Nicotine Is Not Clastogenic at Doses of 1 or 2 mg/kg Body Weight Given Orally to Male Mice. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 542, 139-142.
https://doi.org/10.1016/j.mrgentox.2003.08.008

[15]   Meira-Neto, R.A. and Almeida, S.S. (2015) Phytochemical, Microbiological and Cytotoxic Evaluation of Leaves of Gossypium arboreum L. (Malvaceae). Biota Amazonia, 5, 18-22.
https://doi.org/10.18561/2179-5746/biotaamazonia.v5n2p18-22

[16]   Mans, D.R.A., Tjoe, L.J.D., Oedayraisingh, K., Soekhoe, R., Magali, I., Friperson, P., Djotaroeno, M., Pawirodihardjo, J., Toelsie, J.R., Hasrat, J.A. and Bipat, R. (2015) Cytotoxic and Genotoxic Effects of Commonly Used Surinamese Medicinal Plants in Cultured Chinese Hamster Ovary Cells. 60th Annual Scientific Meeting, Caribbean Public Health Agency, Grenada, Caribbean Public Health Agency, The University of the West Indies, Faculty of Medical Sciences, 1-75.

[17]   Thomas, K.D., Caxton-Martins, A.E., Elujoba, A.A. and Oyelola, O.O. (1991) Effects of an Aqueous Extract of Cotton Seed (Gossypium barbadense L.) on Adult Male Rats. Advances in Contraception, 7, 353-362.
https://doi.org/10.1007/BF02340182

[18]   Melo, F.B.A. (2014) Nutrient Intake, Performance and Genotoxic Analysis of Sheep Fed with Inclusion of Cotton Pie in the Diet. Dissertation, Federal Rural University of the Semi-Arid, Mossoró.

[19]   Romero, A.C., Mariano, I.C., Uliana, R., Louvandini, H. and Abdalla, A.L. (2011) Implicacoes para exatidao na quantificacao do gossipol livre: II. Variabilidade associada à extracao e efeito do tempo de maceracao. Revista de Educacao Continuada em Medicina Veterinária e Zootecnia do CRMV-SP, 9, 71.

[20]   Nayak, B.N. and Buttar, H.S. (1986) Induction of Sister Chromatid Exchanges and Chromosome Damage by Gossypol in Bone Marrow Cells of Mice. Teratogenesis, Carcinogenesis, and Mutagenesis, 6, 83-91.
https://doi.org/10.1002/tcm.1770060202

[21]   Gilbert, N.E., Reilly, J.E., Chang, C.J., Lin, Y.C. and Brueggemeier, R.W. (1995) Antiproliferative Activity of Gossypol and Gossypolone on Human Breast Cancer Cells. Life Sciences, 57, 61-67.
https://doi.org/10.1016/0024-3205(95)00243-Y

[22]   Liang, X.S., Rogers, A.J., Webber, C.L., Ormsby, T.J., Tiritan, M.E., Maltin, S.A., et al. (1995) Developing the Gossypol Derivatives with Enhanced Antitumor Activity. Investigational New Drugs, 13, 181-186.
https://doi.org/10.1007/BF00873798

[23]   Wu, D. (1989) An Overview of the Clinical Pharmacology and Therapeutic Potential of Gossypol as a Male Contraceptive Agent and in Gynecological Disease. Drugs, 38, 333-341.
https://doi.org/10.2165/00003495-198938030-00001

[24]   Hartman, P.E. and Shankel, D.M. (1990) Antimutagens and Anticarcinogens: A Survey of Putative Interceptor Molecules. Environmental and Molecular Mutagenesis, 15, 145-182.
https://doi.org/10.1002/em.2850150305

[25]   De Flora, S., Bagnosco, M. and Vainio, H. (1999) Modulation of Genotoxic and Related Effects b Carotenoids and Vitamin A in Experimental Models: Mechanistic Issues. Mutagenesis, 14, 153-172.
https://doi.org/10.1093/mutage/14.2.153

[26]   Mantle, D., Lennard, T.W. and Pickering, A.T. (2000) Therapeutic Applications of Medicinal Plants in the Treatment of Breast Cancer: A Review of Their Pharmacology, Efficacy and Tolerability. Adverse Drug Reactions and Toxicology Reviews, 19, 223-240.

[27]   Wang, X., Beckham, T.H., Morris, J.C., Chen, F. and Gangemi, J.D. (2008) Bioactivities of Gossypol, 6-Methoxygossypol, and 6,6’-Dimethoxygossypol. Journal of Agricultural and Food Chemistry, 56, 4393-4398.
https://doi.org/10.1021/jf073297u

 
 
Top