Back
 MSA  Vol.8 No.7 , July 2017
Effect of 3 mol% Yttria Stabilized Zirconia Addition on Structural and Mechanical Properties of Alumina-Zirconia Composites
Abstract: Alumina-Zirconia (Al2O3-ZrO2) composites especially Zirconia Toughened Alumina (ZTA) shows better mechanical properties over alumina. Al2O3-ZrO2 composites were prepared by powder compaction method varying 3 mol% yttria stabilized zirconia (3Y-ZrO2) content from 0 to 20 vol% using small amount of MgO as sintering aid. The composites were sintered for two hours in air at 1580°C. At this temperature maximum density was achieved 99.31% of theoretical density for composite containing 20 vol% 3Y-ZrO2. Density measurement of sintered composites was carried out using Archimedes’s method. Hardness and fracture toughness measurement was carried out using Vickers indentation. Phase content and t-ZrO2 retention were detected by means of X-ray diffraction (XRD). Microstructure of the composites and grain size of alumina and zirconia was determined by Scanning Electron Microscopic (SEM) analysis. Maximum microhardness (17.46 GPa) was achieved for composite containing 5 vol% ZrO2 and maximum flexural strength (684.32 MPa) and fracture toughness (10.33 MPam0.5) was achieved for composite containing 20 vol% of 3Y-ZrO2. The aim of the present work is to investigate the optimum 3Y-ZrO2 content for obtaining maximum density, microhardness, flexural strength and fracture toughness of Al2O3-ZrO2 composites.
Cite this paper: Gafur, M. , Sarker, M. , Alam, M. and Qadir, M. (2017) Effect of 3 mol% Yttria Stabilized Zirconia Addition on Structural and Mechanical Properties of Alumina-Zirconia Composites. Materials Sciences and Applications, 8, 584-602. doi: 10.4236/msa.2017.87041.
References

[1]   Fischer, H. and Marx, R. (2002) Fracture Toughness of Dental Ceramics: Comparison of Bending and Indentation Method. Dental Materials, 18, 12-19.
https://doi.org/10.1016/S0109-5641(01)00005-7

[2]   Grive, R.C. (1988) Vol. 24: Science and Technology of Zircinia III. In: Advance in Ceramics, American Ceramic Society, Ohio, p. 57.

[3]   Wang, J. and Stevens, R. (1989) Zirconia Toughened Alumina (ZTA) Ceramics. Journal of Materials Science, 24, 3421-3440.
https://doi.org/10.1007/BF02385721

[4]   Becher, P.F. (1991) Advance in Design of Toughened Ceramics. Journal of the Ceramic Society of Japan, 99, 993-1001.
https://doi.org/10.2109/jcersj.99.993

[5]   Heuer, H., Lange, F.F. and Swin, M.V. (1986) Transformation Toughening—An Overview. Journal of the American Ceramic Society, 69, i-iv.
https://doi.org/10.1111/j.1151-2916.1986.tb07400.x

[6]   Claussen, N. (1976) Fracture Toughness of Al2O3 with an Unstabilised ZrO2 Dispersed Phase. Journal of the American Ceramic Society, 59, 49-51.

[7]   Joyti, P., Devendra, K. and Kalyanj, M. (2011) Mechanical Behavior of Alumina-Zirconia Composite by Slurry Method. IJEST, 3, 1359-1367.

[8]   de Moraes, B., Elias, C.N., Filho, J.D. and de Oliva, L.G. (2004) Mechanical Properties of Alumina-Zirconia Composites for Ceramic Aboutments. Material Research. 7, 643-649.
https://doi.org/10.1590/S1516-14392004000400021

[9]   Tuan, W.H., Chen, R.Z., Wang, T.C., Cheng, C.H. and Kuo, S. (2002) Mechanical Properties of Al2O3/ZrO2 Composites. Journal of the European Ceramic Society, 22, 2827-2833.
https://doi.org/10.1016/s0955-2219(02)00043-2

[10]   Mills, H. and Blackburn, S. (2000) Zirconia Toughened Aluminas by Hydro-Thermal Processing. Journal of the European Ceramic Society, 20, 1085-1090.
https://doi.org/10.1016/S0955-2219(99)00274-5

[11]   Bleier, A. and Westmoreland, C.G. (1991) Effects of pH and Particle Size on the Processing of and the Development of Microstructure in Alumina-Zirconia Composites. Journal of the American Ceramic Society, 74, 3100-3111.
https://doi.org/10.1111/j.1151-2916.1991.tb04307.x

[12]   Suzuki, T., Sakka, Y., Nakano, K. and Hiraga, H. (1998) Effect of Ultrasonication on Colloidal Dispersions of Al2O3 and ZrO2 in pH Controlled Suspensions. JIM, 39, 682-689.

[13]   Subbarao, E.C. (1981) Zirconia—An Overview. In: Heuer, A.H. and Hobbs, L.W., Eds., Advances in Ceramics, The American Ceramic Society, Westerville, 1-24.

[14]   Heuer, A.H. (1991) Transformation Toughening. In: Brook, R.J., Ed., Concise Encyclopedia of Advanced Ceramic Materials, Pragamon Press, Oxford, 494-497.

[15]   Evans, G. and Heuer, A.H. (1980) Review—Transformation Toughening in Ceramics: Martensitic Transformation in Crack-Tip Stress Fields. Journal of the American Ceramic Society, 63, 241-248.

[16]   Green, D.J., Hannink, R.H.J. and Swan, M.V. (1989) Transformation Toughening of Ceramics. CRC Press, Boca Raton.

[17]   Garve, R.C. (1988) Critical Size Effects in Alumina-Zirconia Alloys. In: Claussen, N., Ruhle, M. and Heuer, A.H., Eds., Advances in Ceramics, The American Ceramic Society, Columbus, 55-69.

[18]   Hussen, M.M., Chowdhury, F.-U.-Z., Gafur, M.A. and Abdul Hakim, A.K.M. (2014) Structural and Mechanical Properties of Zirconia Toughened Alumina (ZTA) Composites. IJERT, 3, 2127-2134.

[19]   Heuer, A.H. (1987) Transformation Toughening in ZrO2-Containing Ceramics. Journal of the American Ceramic Society, 70, 689-698.

[20]   Bleier, A., Becher, F., Westmoreland, C.G. and Alexander, K.B. (1992) Effect of Aqueous Processing Conditions on the Microstructure and Transformation Behaviour in Al2O3-ZrO2 (CeO2) Composites. Journal of the American Ceramic Society, 75, 2649-2658.
https://doi.org/10.1111/j.1151-2916.1992.tb05484.x

[21]   Rana, R. (2009) Powder Processing, Densification Behavior, Microstructure and Mechanical Properties of Al2O3 50 vol% ZrO2 Composites. PhD Thesis, National Institute of Technology, Rourkela.

[22]   Pabst, W., Gregorova, E., Icha, G. and Tynova, E. (2004) Effective Elastic Properties of Al2O3-ZrO2 Composite Composites Part 4. Tensile Modulus of Porous Al2O3 and ZrO2. Composites—Silikáty, 48, 165-174.

[23]   Anstis, G.R., Chantikul, Lawn, B.R. and Marshall, D.B. (1981) Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I Direct Crack Measurements. Journal of the American Ceramic Society, 64, 533-538.
https://doi.org/10.1111/j.1151-2916.1981.tb10320.x

[24]   Rao, G., Iwasa, M., Tanaka, T., Kondoh, I. and Inoue, T. (2003) Preparation and Mechanical of Al2O3-15 wt% ZrO2 Composites. Scripta Materialia, 48, 437-441.

[25]   Wu, Y., Bandyopadhyay, A. and Bose, S. (2004) Processing of Alumina and Zirconia Nanopowders and Compacts. Materials Science and Engineering A, 380, 349-355.

[26]   Hori, S., Somiya, H.Y. and Kaji, H. (1988) Change of Tetragonal Zirconia Content in Zirconia-Toughened Alumina by Hot Isostating Pressing. Journal of Materials Science Letters, 3, 242-244.

[27]   Tan, K.S. and Ramalingam, H. (1997) The Elastic Moduli and Diametrical Compressive Fracture Stress of Al2O3-ZrO2 Ceramics. Journal of Physics D: Applied Physics, 30, l029-1037.
https://doi.org/10.1088/0022-3727/30/6/017

[28]   De Azaa, A.H., Chevalier, J., Fantozzi, G., Schehl, M. and Torrecillas, R. (2002) Crack Growth Resistance of Alumina, Zirconia and Zirconia Toughened Alumina Ceramics for Joint Prostheses. Biomaterials, 23, 937-945.

[29]   Grive, R.C. (1965) Occurrence of Meta-Stable Tetragonal Zirconia as a Crystallite Size Effect. The Journal of Physical Chemistry, 69, 1238-1243.
https://doi.org/10.1021/j100888a024

[30]   Heuer, A.H., Claussen, N., Kriven, W.M. and Ruhle, M. (1982) Stability of Tetragonal ZrO2 Particles in Ceramic Materials. Journal of the American Ceramic Society, 65, 642-650.
https://doi.org/10.1111/j.1151-2916.1982.tb09946.x

[31]   Claussen, N. and Jahn, J. (1978) Transformation of Tetragonal ZrO2 Particles in a Ceramic Matrix. Berichte der Deutschen Keramischen Gesellschaft, 55, 487-491.

[32]   Biamino, S., Fino, M. and Badini, C. (2005) Alumina-Zirconia Yttria Nanocomposites Prepared by Solution Combustion Synthesis. Ceramics International Available on Line 31st May.

[33]   Casellas, D., Afols, I.R., Llanes, L. and Anglada, M. (1999) Fracture Toughness of Zirconia-Alumina Composites. International Journal of Refractory Metals & Hard Materials, 17, 11-22.

 
 
Top