JAMP  Vol.5 No.7 , July 2017
Riemann Hypothesis
Abstract: This work represents the development and detailing of works in [1] [2], and work is dedicated to the promotion of the results Abels obtained modifying zeta functions. The properties of zeta functions are studied; these properties lead to new regularities of zeta functions. The choice of a special type of modified zeta functions allows estimating the Riemann’s zeta function and solving Riemann Problem.
Cite this paper: Durmagambetov, A. (2017) Riemann Hypothesis. Journal of Applied Mathematics and Physics, 5, 1424-1430. doi: 10.4236/jamp.2017.57117.

[1]   Durmagambetov, A.A. (2016) The Riemann Hypothesis-Millennium Prize Problem. Advances in Pure Mathematics, 6, 915-920.

[2]   Durmagambetov, A.A. (2017) The Solution of the Riemann Hypothesis. AIP Conference Proceedings, 1836, 020030.

[3]   Euler, L. (1988) Introduction to Analysis of the Infinite by John Blanton. Book I, ISBN 0-387-96824-5, Springer-Verlag, Berlin.

[4]   Chebyshev P.L. (1946) Fav. Mathematical Works M.-L..

[5]   Riemann, G.F.B. (1972) On the Number of Prime Numbers Less than a Given Quantity. Chelsea, New York.

[6]   Titchmarsh, E.C. (1986) The Theory of the Riemann Zeta Function. Second Revised (Heath-Brown) Edition. Oxford University Press, Oxford.

[7]   Ray, D., Singer, I.M. (1971) R-Torsion and the Laplacian on Riemannian Manifolds. Advances in Mathematics, 7, 145-210.

[8]   Bost J.-B. Fibres determinants, determinants regularises et measures sur les espaces de modules des courbes complexes. Sem. Bourbaki, 39 eme annee 1986-1987.

[9]   Kawagoe, K., Wakayama, M. and Yamasaki, Y. (2008) The q-Analogues of the Riemann Zeta, Dirichlet L-Functions, and a Crystal Zeta-Function. Forum Math, Vol. 77.

[10]   Baibekov, S.N. and Durmagambetov, A.A. (2016) Infinitely Many Twin. arXiv, 71, 1609.04646.