Back
 JAMP  Vol.5 No.7 , July 2017
Covariant Prolongation Structure, Conservation Laws and Soliton Solutions of the Gross-Pitaevskii Equation in the Bose-Einstein Condensate
Abstract: In this paper, we investigate the Gross-Pitaevskii (GP) equation which describes the propagation of an electron plasma wave packet with a large wavelength and small amplitude in a medium with a parabolic density and constant interactional damping by the Covariant Prolongation Structure Theory. As a result, we obtain general forms of Lax-Pair representations. In addition, some hidden structural symmetries that govern the dynamics of the GP equation such as SL(2,R), SL(2,C), Virasoro algebra, SU(1,1) and SU(2) are unearthed. Using the Riccati form of the linear eigenvalue problem, infinite number of conservation laws of the GP equation is explicitly constructed and the exact analytical soliton solutions are obtained by employing the simple and straightforward Hirota’s bilinear method.
Cite this paper: Abbagari, S. , Halidou, H. , B. Bouetou, T. and C. Kofane, T. (2017) Covariant Prolongation Structure, Conservation Laws and Soliton Solutions of the Gross-Pitaevskii Equation in the Bose-Einstein Condensate. Journal of Applied Mathematics and Physics, 5, 1411-1423. doi: 10.4236/jamp.2017.57116.
References

[1]   Christiansen, P.L., Eilbeck, J.C. and Parmentier, R.D. (1993) Future Directions of Nonlinear Dynamics in Physical and Biological Systems. Plenum Press, New York, Vol. 312, 1-555.

[2]   Sulem, C. and Sulem, P.L. (1999) The Nonlinear Schrodinger Equation Self-Focusing and Wave Collapse. Springer-Verlag, New York, Vol. 139, 1-347

[3]   Hasegawa, A. and Matsumoto, M. (2003) Optical Solitons in Fiber. Springer-Verlag, Berlin, Heidelberg, New York.
https://doi.org/10.1007/978-3-540-46064-0

[4]   Gupta, M.R. (1979) Exact Inverse Scattering Solution of a Non-Linear Evolution Equation in a Non-Uniform Medium. Physics Letters A, 72, 420-422.
https://doi.org/10.1016/0375-9601(79)90833-8

[5]   Uthayakumar, A., Han, Y.G and Lee, S.B. (2006) Soliton Solutions of Coupled Inhomogeneous Nonlinear Schrdinger Equation in Plasma. Chaos, Solitons & Fractals, 29, 916-919.
https://doi.org/10.1016/j.chaos.2005.08.055

[6]   Wahlquist, H.D and Estabrook, F.B. (1975) Prolongation Structures of Nonlinear Evolution Equations. Journal of Mathematical Physics, 16, 1-7.
https://doi.org/10.1063/1.522396

[7]   Hermann, R. (1976) Pseudopotentials of Estabrook and Wahlquist, the Geometry of Solitons, and the Theory of Connections. Physical Review Letters, 36, 835-836.
https://doi.org/10.1103/PhysRevLett.36.835

[8]   Dodd, R. and Fordy, A. (1983) The Prolongation Structures of Quasi-Polynomial Flows. Proceedings of the Royal Society of London A, 385, 389-429.
https://doi.org/10.1098/rspa.1983.0020

[9]   Minoru, O. (1986) Prolongation Structures of Nonlinear Equations and Infinite-Dimensional Algebras. Journal of Mathematical Physics, 12, 2853-2860.

[10]   Jinq-fa L. and Jing-ling, C. (1996) Lax Pair and Lie Algebraic Structures of Heterotic Liouville Systems by the Prolongation Approach. Physics Letters A, 213, 32-34. https://doi.org/10.1016/0375-9601(96)00100-4

[11]   Zhai, Y., Albeverio, S., Zhao, Z.W. and Ke, W. (2006) Prolongation Structure of the (2+1)-Dimensional Integrable Heisenberg Ferromagnet Model. Journal of Physics A, 39, 2117-2126.
https://doi.org/10.1088/0305-4470/39/9/008

[12]   Duan, X.J., Deng, M., Zhao, Z.W. and Ke, W. (2007) The Prolongation Structure of the Inhomogeneous Equation of the Reaction Diffusion Type. Journal of Physics A, 40, 3831-3837.
https://doi.org/10.1088/1751-8113/40/14/006

[13]   Tao, X. and Li, L.M. (2008) Covariant Prolongation Structure of Konno-Asai-Kakuhata Equation. Communications in Theoretical Physics, 50, 565-567.
https://doi.org/10.1088/0253-6102/50/3/05

[14]   Yan, Z., Yao, S., Zhang, C. and Gegenhasi (2016) The Fermionic Covariant Prolongation Structure of the Super Generalized Hirota Equation. Modern Physics Letters B, 30, Article ID: 1650251.

[15]   Bracken, P. (2010) A Geometric Interpretation of Prolongation by Means of Connections. Journal of Mathematical Physics, 51, Article ID: 113502.

[16]   Bracken, P. (2010) Integrability and Prolongation Structure of a Generalized Korteweg-de Vries Equation. Journal of Mathematics and Statistics, 6, 125-130.
https://doi.org/10.3844/jmssp.2010.125.130

[17]   Cao, Y.H. and Wang, D.S. (2010) Prolongation Structures of a Generalized Coupled Korteweg-de Vries Equation and Miura Transformation. Communications in Nonlinear Science and Numerical Simulation, 15, 2344-2349.

[18]   Wang, D.S. (2010) Integrability of the Coupled KdV Equations Derived from Two-Layer Fluids: Prolongation Structures and Miura Transformations. Nonlinear Analysis, 73, 270-281.

[19]   Wang, D.S. (2010) Complete Integrability and the Miura Transformation of a Coupled KdV Equation. Applied Mathematics Letters, 23, 665-669.

[20]   Wang, D.S. (2010) Integrability of a Coupled KdV System: Painlevé Property, Lax Pair and Bäcklund Transformation. Applied Mathematics Letters, 216, 1349-1354.

[21]   Ming, D. and Li, L.M (2010) Covariant Prolongation Structure of Coupled Inhomogeneous Nonlinear Schrödinger Equation. Communications in Theoretical Physics, 53, 218-222.
https://doi.org/10.1088/0253-6102/53/2/03

[22]   Thomas, B.B., Souleymanou, A., Kuetche, K.V., Mouna, F. and Kofane, T.C. (2011) Jet Bundle Formalism towards the Extension of the Stretched Rope Equation. Journal of Mathematical Analysis and Applications, 377, 269-273.

[23]   Souleymanou, A., Thomas, B.B. and Kofane, T.C. (2013) Generating a New Higher-Dimensional Coupled Integrable Dispersionless System: Algebraic Structures, Bäcklund Transformation and Hidden Structural Symmetries. Communications in Theoretical Physics, 60, 145-149.
https://doi.org/10.1088/0253-6102/60/2/01

[24]   Morris, H. (1977) A Prolongation Structure for the AKNS System and Its Generalization. Journal of Mathematical Physics, 18, 533-536.
https://doi.org/10.1063/1.523298

[25]   Lu, Q.K., Guo, H.Y. and Wu, K. (1983) A Formulation of Nonlinear Gauge Theory and Its Applications. Communications in Theoretical Physics, 2, 1029-1038.
https://doi.org/10.1088/0253-6102/2/2/1029

[26]   Guo, H., Hsiang, Y. and Wu, K. (1982) Connection Theory of Fibre Bundle and Prolongation Structures of Nonlinear Evolution Equations. Communications in Theoretical Physics, 1, 495-505.
https://doi.org/10.1088/0253-6102/1/4/495

[27]   Wu, K., Guo, H.Y. and Wang, S.K. (1983) Prolongation Structures of Nonlinear Systems in Higher Dimensions. Communications in Theoretical Physics, 2, 1425-1437.
https://doi.org/10.1088/0253-6102/2/5/1425

[28]   Davis, K.B., Mewes, M.O., Andrews, M.R., van Druten, N.J., Durfee, D.S., Kurn, D.M. and Ketterle, W. (1995) Bose-Einstein Condensation in a Gas of Sodium Atoms. Physical Review Letters, 75, 3969-3973.
https://doi.org/10.1103/PhysRevLett.75.3969

[29]   Bradley, C.C., Sackett, C.A., Tol-lett, J.J. and Hulet, R.G. (1995) Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions. Physical Review Letters, 75, 1687-1690.
https://doi.org/10.1103/PhysRevLett.75.1687

[30]   Liang, Z.X., Zhang, Z.D. and Liu, W.M. (2005) Dynamics of a Bright Soliton in Bose Einstein Condensates with Time Dependent Atomic Scattering Length in an Expulsive Parabolic Potential. Physical Review Letters, 94, Article ID: 050402.

[31]   Li, Q.Y., Li, Z.D., Li, L. and Fu, G.S. (2010) Nonautonomous Bright and Dark Solitons of Bose Einstein Condensates with Feshbach Managed Time Dependent Scattering Length. Optics Communications, 283, 3361-3366.

[32]   Modugno, G., Ferrari, G., Roati, G., Brecha, R.J., Simoni, A. and Inguscio, M. (2001) Bose-Einstein Condensation of Potassium Atoms by Sympathetic Cooling. Science, 294, 1320-1322.
https://doi.org/10.1126/science.1066687

[33]   Fried, D.G., Killian, T.C., Willmann, L., Landhuis, D., Moss, S.C., Kleppner, D. and Greytak, T.J. (1998) Bose-Einstein Condensation of Atomic Hydrogen. Physical Review Letters, 81, 3811-3814.
https://doi.org/10.1103/PhysRevLett.81.3811

[34]   Yang, Z.Y., Zhao, L.C., Zhang, T., Feng, X.Q. and Xue, R.H. (2011) Dynamics of a Nonautonomous Soliton in a Generalized Nonlinear Schrödinger Equation. Physical Review E, 83, Article ID: 066602.

[35]   Wang, H. and Li, B. (2011) Solitons for a Generalized Variable-Coefficient Nonlinear Schrödinger Equation. Chinese Physics B, 20, Article ID: 040203.

[36]   Li, L., Li, Z.H., Li, S.Q. and Zhou, G.S. (2004) Modulation Instability and Solitons on a cw Background in Inhomogeneous Optical Fiber Media. Optics Communications, 234, 169-176.

[37]   Gupta, M.R., Som, B.K. and Dasgupta, B. (1978) Exact Solution of Damped Nonlinear Schrödinger Equation for a Parabolic Density Profile. Physics Letters A, 69, 172-174.

[38]   Ablowitz, M.J., Kaup, D.J., Newell, A.C. and Segur, H. (1973) Nonlinear-Evolution Equations of Physical Significance. Physical Review Letters, 31, 125-127.
https://doi.org/10.1103/PhysRevLett.31.125

[39]   Wright, O.C. and Forest, M.G. (2000) On the Bäcklund-Gauge Transformation and Homoclinic Orbits of a Coupled Non-linear Schrödinger System. Physica D: Nonlinear Phenomena, 141, 104-116.

[40]   Yang, Y.-Q. and Chen, Y. (2011) Prolongation Structure of the Equation Studied by Qiao. Communications in Theoretical Physics, 56, 463-466.
https://doi.org/10.1088/0253-6102/56/3/13

[41]   Zhao, L.C., Yang, Z.Y., Ling, L.M. and Liu, J. (2011) Precisely Controllable Bright Nonautonomous Solitons in Bose Einstein Condensate. Physics Letters A, 375, 1839-1842.

[42]   Hirota, R. (2004) The Direct Method in Soliton Theory. Cambridge University Press, Cambridge, 198.
https://doi.org/10.1017/CBO9780511543043

[43]   Hirota, R. and Ohta, Y. (1991) Hierarchies of Coupled Soliton Equations. I. Journal of the Physical Society of Japan, 60, 798-809.
https://doi.org/10.1143/JPSJ.60.798

[44]   Ma, W.X. and You, Y.C. (2005) Solving the Korteweg-de Vries Equation by Its Bilinear Form: Wronskian Solutions. Transactions of the American Mathematical Society, 357, 1753-1778.
https://doi.org/10.1090/S0002-9947-04-03726-2

 
 
Top