Back
 MSA  Vol.8 No.7 , July 2017
Mechanical Properties of Lab Joint Composite Structure of Glass Fiber Reinforced Polymers
Abstract: Glass fiber composite laminates have competitive properties than monotonic material for their superior mechanical strength. Lab joints in composite structure are of great importance in aerospace and aircraft industry. Therefore, lab joints’ strength and failure of composite laminates structure are experimentally investigated. Composites laminates of four different stacking sequences and layup are manufactured using hand layup technique and curing at room temperature. Specimens of unidirectional laminates of [0]8 stacking sequence are used to test lamina mechanical properties while [0/90]2s, [0/60/90]s and woven are used to test the mechanical properties of lab joints. Lab joints of single row and double row are produced and tested in bearing using simple mode I test (tension test). The results illustrate that bearing strength of quasi-brittle laminates of [0/60/90]s has more stability and strength than that of woven glass fiber, then the cross ply laminates of [0/90]2s; this can be attributed to increase of anisotropy of cross ply laminates than other composite laminate structure.
Cite this paper: Abdellah, M. , Kamal, M. , Alsoufi, M. , Ghazaly, N. and Abdel-Jaber, G. (2017) Mechanical Properties of Lab Joint Composite Structure of Glass Fiber Reinforced Polymers. Materials Sciences and Applications, 8, 553-565. doi: 10.4236/msa.2017.87038.
References

[1]   Abdellah, M.Y., Hassan, M.K., Mandourah, T. and Mohamed, A.F. (2016) Bearing Strength and Failure Behavior of Bolted GLARE Joints. International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS, 16, 54-63.

[2]   Mohammed, Y., Hassan, M.K. and Hashem, A. (2014) Analytical Model to Predict Multiaxial Laminate Fracture Toughness from 0 Ply Fracture Toughness. Polymer Engineering & Science, 54, 234-238.
https://doi.org/10.1002/pen.23552

[3]   Hart-Smith, L. (1976) Bolted Joints in Graphite-Epoxy Composites. DTIC Document.

[4]   Camanho, P.P. and Matthews, F. (1997) Stress Analysis and Strength Prediction of Mechanically Fastened Joints in FRP: A Review. Composites Part A: Applied Science and Manufacturing, 28, 529-547.
https://doi.org/10.1016/S1359-835X(97)00004-3

[5]   Xiao, Y. and Ishikawa, T. (2005) Bearing Strength and Failure Behavior of Bolted Composite Joints (Part I: Experimental Investigation). Composites Science and Technology, 65, 1022-1031.
https://doi.org/10.1016/j.compscitech.2005.02.011

[6]   Xiao, Y. and Ishikawa, T. (2005) Bearing Strength and Failure Behavior of Bolted Composite Joints (Part II: Modeling and Simulation). Composites Science and Technology, 65, 1032-1043.
https://doi.org/10.1016/j.compscitech.2004.12.049

[7]   Hung, C.-L. and Chang, F.-K. (1996) Bearing Failure of Bolted Composite Joints. Part II: Model and Verification. Journal of Composite Materials, 30, 1359-1400.
https://doi.org/10.1177/002199839603001204

[8]   Mohammed, Y., Hassan, M.K. and Hashem, A. (2012) Finite Element Computational Approach of Fracture Toughness in Composite Compact Tension Specimen. International Journal of Mechanical and Mechatronics Engineering, 12, 57-61.

[9]   Khashaba, U.A. (2004) In-Plane Shear Properties of Cross-Ply Composite Laminates with Different Off-Axis Angles. Composite Structures, 65, 167-177.

[10]   Mohammed, Y., Hassan, M.K., El-Ainin, H. and Hashem, A. (2014) Effect of Stacking Sequence and Geometric Scaling on the Brittleness Number of Glass Fiber Composite Laminate with Stress Raiser. Science and Engineering of Composite Materials, 21, 281-288.
https://doi.org/10.1515/secm-2013-0038

[11]   Standard, A. (2011) D3171, Standard Test Methods for Constituent Content of Composite Materials. West Conshohocken.

[12]   Jones, R.M. (1998) Mechanics of Composite Materials. CRC Press, Boca Raton.

[13]   Mallick, P.K. (1997) Composites Engineering Handbook. CRC Press, Boca Raton.

[14]   Standard, A. (1995) Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM D3039/D 3039M.

[15]   Pinho, S.T., Robinson, P. and Iannucci, L. (2006) Fracture Toughness of the Tensile and Compressive Fibre Failure Modes in Laminated Composites. Composites Science and Technology, 66, 2069-2079.
https://doi.org/10.1016/j.compscitech.2005.12.023

[16]   Standard, A. (1996) Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials. D5045-96.

[17]   Hassan, M.K., Mohammed, Y., Salem, T. and Hashem, A. (2012) Prediction of Nominal Strength of Composite Structure Open Hole Specimen through Cohesive Laws. International Journal of Mechanical & Mechatronics Engineering IJMME- IJENS, 12, 1-9.

[18]   Ward, I.M. and Hadley, D.W. (1993) An Introduction to the Mechanical Properties of Solid Polymers. John Wiley & Sons Ltd.; John Wiley & Sons, Inc., Hoboken.

[19]   Mohammed, Y., Hassan, M.K., El-Ainin, H.A. and Hashem, A.M. (2015) Size Effect Analysis of Open-Hole Glass Fiber Composite Laminate Using Two-Parameter Cohesive Laws. Acta Mechanica, 226, 1027-1044.

[20]   Soutis, C., Curtis, P. and Fleck, N. (1993) Compressive Failure of Notched Carbon Fibre Composites. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 241-256.
https://doi.org/10.1098/rspa.1993.0014

 
 
Top