A New Definition for Generalized First Derivative of Nonsmooth Functions

References

[1] F. H. Clarke, “Optimization and Non-Smooth Analysis,” Wiley, New York, 1983.

[2] V. F. Demyanov and A. M. Rubinov, “Constructive Nonsmooth Analysis,” Verlag Peter Lang, New York, 1995.

[3] W. Schirotzek, “Nonsmooth Analysis,” Springer, New York, 2007. doi:10.1007/978-3-540-71333-3

[4] B. Mordukhovich, “Approximation Methods in Problems of Optimization and Control,” Nauka, Moscow, 1988.

[5] B. Mordukhovich, “Complete Characterizations of Openness, Metric Regularity, and Lipschitzian Properties of Multifunctions,” Transactions of the American Mathematical Society, Vol. 340, 1993, pp. 1-35.
doi:10.2307/2154544

[6] B. S. Mordukhovich, “Gene-ralized Differential Calculus for Nonsmooth and Set-Valued Mappings,” Journal of Mathematical Analysis and Applications, Vol. 183, No. 1, 1994, pp. 250-288. doi:10.1006/jmaa.1994.1144

[7] B. Mordukhovich, “Variational Analysis and Generalized Differentiation,” Vol. 1-2, Springer, New York, 2006.

[8] B. Mordukho-vich, J. S. Treiman and Q. J. Zhu, “An Extended Extremal Principle with Applications to Multiobjective Optimi-zation,” SIAM Journal on Optimization, Vol. 14, 2003, pp. 359-379.
doi:10.1137/S1052623402414701

[9] A. D. Ioffe, “Nonsmooth Analysis: Differential Calculus of Nondif-ferentiable Mapping,” Transactions of the American Ma-thematical Society, Vol. 266, 1981, pp. 1-56.
doi:10.1090/S0002-9947-1981-0613784-7

[10] A. D. Ioffe, “Approximate Subdifferentials and Applications I: The Finite Dimensional Theory,” Transactions of the American Mathematical Society, Vol. 281, 1984, pp. 389-416.

[11] A. D. Ioffe, “On the Local Surjection Property,” Nonlinear Analysis, Vol. 11, 1987, pp. 565-592.
doi:10.1016/0362-546X(87)90073-3

[12] A. D. Ioffe, “A Lagrange Multiplier Rule with Small Convex-Valued Subdifferentials Fornonsmooth Problems of Mathematical Programming Involving Equality and Nonfunctional Constraints,” Mathematical Programming, Vol. 588, 1993, pp. 137-145. doi:10.1007/BF01581262

[13] A. D. Ioffe, “Metric Regularity and Subdifferential Calculus,” Russian Mathematical Surveys, Vol. 55, No. 3, 2000, pp. 501-558.
doi:10.1070/RM2000v055n03ABEH000292

[14] M. S. Gowda and G. Ravindran, “Algebraic Univalence Theo-rems for Nonsmooth Functions,” Journal of Mathematical Analysis and Applications, Vol. 252, No. 2, 2000, pp. 917-935. doi:10.1006/jmaa.2000.7171

[15] R. T. Rock-afellar and R. J. Wets, “Variational Analysis,” Springer, New York, 1997.

[16] P. Michel and J.-P. Penot, “Calcul Sous-Diff′erentiel Pour des Fonctions Lipschitziennes et Non-Lipschitziennes,” CR Academic Science Paris, Ser. I Math. Vol. 298, 1985, pp. 269-272.

[17] J. S. Treiman, “Lagrange Multipliers for Nonconvex Generalized Gra-dients with Equality, Inequality and Set Constraints,” SIAM Journal on Optimization, Vol. 37, 1999, pp. 1313-1329. doi:10.1137/S0363012996306595

[18] E. Stade, “Fourier Analysis, USA,” Wiley, New York, 2005.

[19] M. S. Bazaraa, J. J. Javis and H. D. Sheralli, “Linear Programming,” Wiley & Sons, New York, 1990.

[20] M. S. Bazaraa, H. D. Sheralli and C. M. Shetty, “Nonlinear Programming: Theory and Applica-tion,” Wiley & Sons, New York, 2006.