Self-Similar Solution of Heat and Mass Transfer of Unsteady Mixed Convection Flow on a Rotating Cone Embedded in a Porous Medium Saturated with a Rotating Fluid

References

[1] J. P. Hartnett and E. C. Deland, “The Influence of Prandtl Number on the Heat Transfer from Rotating Non-Isothermal Disks and Cones,” ASME Journal of Heat Transfer, Vol. 83, 1961, pp. 95-96.

[2] R. G. Hering and R. J. Grosh, “Laminar Free Convection from a Non-Isothermal Cone,” International Journal of Heat and Mass Transfer, Vol. 5, No. 11, 1962, pp. 1059-1068. doi:10.1016/0017-9310(62)90059-5

[3] C. L. Tien and I. J. Tsuji, “A Theoretical Analysis of Laminar Forced Flow and Heat Transfer about a Rotating Cone,” ASME Journal of Heat Transfer, Vol. 87, 1965, pp. 184-190.

[4] R. G. Hering and R. J. Grosh, “Laminar Free Convection from a Non-Isothermal Cone at Low Prandtl Number,” International Journal of Heat and Mass Transfer, Vol. 8, No. 10, 1965. pp. 1333-1337.
doi:10.1016/0017-9310(65)90059-1

[5] K. Himasekhar, P. K. Sarma and K. Janardhan, “Laminar Mixed Convec-tion from Vertical Rotating Cone,” International Com-munications in Heat and Mass Transfer, Vol. 16, No. 1, 1989, pp. 99-106.
doi:10.1016/0735-1933(89)90045-6

[6] C. Y. Wang, “Boundary Layers on Rotating Cones, Discs and Axi-symmetric Surfaces with a Concentrated Heat Source,” Acta Mechanica, Vol. 81, No. 3-4, 1990, pp. 245-251. doi:10.1007/BF01176992

[7] K. A. Yih, “Mixed Con-vection about a Cone in a Porous Medium: The Entire Regime,” International Communications in Heat and Mass Transfer, Vol. 26, No. 7, 1999, pp. 1041-1050. doi:10.1016/S0735-1933(99)00093-7

[8] S. M. Al-Harbi, “Numerical Study of Natural Convection Heat Transfer with Variable Viscosity and Thermal Radiation from a Cone and Wedge in Porous Media,” Applied Ma-thematics and Computation, Vol. 170, 2005, pp. 64-75. doi:10.1016/j.amc.2004.10.093

[9] H. S. Takhar, A. Chamkha and G. Nath, “Unsteady Mixed Convention Flow from a Rotating Vertical Cone with a Magnetic Field,” Heat and Mass Transfer, Vol. 39, No. 4, 2003, pp. 297-304.

[10] D. Anilkumar and S. Roy, “Unsteady Mixed Convection Flow on a Rotating Cone in a Rotating Fluid,” Applied Mathematics and Computation, Vol. 155, No. 2, 2004, pp. 545-561. doi:10.1016/S0096-3003(03)00799-9

[11] I. Pop and D. B. Ingham, “Convective Heat Transfer: Mathematical and Computational Modeling of Viscous Fluids and Porous Media,” Pergamon, Oxford, 2001.

[12] D. A. Nield and A. Bejan, “Convection in Porous Media,” Springer-Verlag, New York, 2005.

[13] I. A. Hassanien, F. S. Ibrahim and Gh. M. Omer, “Unsteady Free Convection Flow in the Stagnation-Point Region of a Rotating Sphere Embedded in a Porous Medium,” Mechanical Engineering, Vol. 7, 2004, pp. 89-98.

[14] I. A. Hassanien, F. S. Ibrahim and Gh. M. Omer, “Unsteady Flow and Heat Transfer of a Viscous Fluid in the Stagnation Region of a Three-Dimensional Body Embedded in a Porous Me-dium,” Journal of Porous Media, Vol. 9. No. 4, 2006, pp. 357-372.
doi:10.1615/JPorMedia.v9.i4.60

[15] F. S. Ibrahim, A. M. Elaiw and A. A. Bakr, “Effect of Chemical Reaction and Radiation Absorption on the Un-steady MHD Free Convection Flow Past a Semi Infinite Vertical Permeable Moving Plate with Heat Source and Suction,” Communications in Nonlinear Science and Numerical Simulation, Vol. 13, No. 6, 2008, pp. 1056- 1066. doi:10.1016/j.cnsns.2006.09.007

[16] S. Roy, P. Datta and N. C. Mahanti, “Non-Similar Solution of an Unsteady Mixed Convection Flow over a Vertical Cone with Suction or Injection,” International Journal of Heat and Mass Transfer, Vol. 50, 2007, pp. 181- 187. doi:10.1016/j.ijheatmasstransfer.2006.06.024

[17] E. Osalusi, J. Side, R. Harris and P. Clark, “The Effect of Combined Viscous Dissipation and Joule Heating on Un-steady Mixed Convection MHD Flow on a Rotating Cone in a Rotating Fluid with Variable Properties in the Pres-ence of Hall and Ion-Slip Currents,” International Com-munications in Heat and Mass Transfer, Vol. 35, No. 4, 2008, pp. 413-429.
doi:10.1016/j.icheatmasstransfer.2007.09.002

[18] K. Inouye and A. Tate, “Finite Difference Version Quasili-nearization Applied to Boundary Layer Equations,” AIAA Journal, Vol. 12, No. 4, 1974, pp. 558-560. doi:10.2514/3.49286