Back
 OJBIPHY  Vol.7 No.3 , July 2017
Evaluation of the Effects of Irradiation of Peanut Grain by a Gamma-Ray Beam on Culture
Abstract: The problems of agriculture in Senegal result in a low yield per hectare and poor seed quality contributing strongly to the decline in productivity. Mutagenesis by X- or Y-ray irradiation makes it possible to obtain genetic mutants necessary to improve production. It is in this context that we undertook this study to evaluate the effects induced on the cultivation of peanut seeds irradiated by X-rays at low doses applied in radiotherapy. X-ray irradiation of four (2, 3, 4, 5) lots of peanuts are performed with respectively 0.5, 1.5, 2 and 4 Gray using the cobalt 60 therapy device (Alcyon II). The seeding of the seeds and then the following-up of the crops during 35 days allowed us to study the parameters of germination, growth and yield. The results obtained after monitoring revealed that the irradiation did not have any significant impact on germination and would appear to temporarily inhibit the growth rate compared to the control batch. However, the decrease in weight of the harvested seeds can be explained by the absence of fertilizer during the cultivation.
Cite this paper: Mbaye, G. , Soumboundou, M. , Diouf, L. , Ndong, B. , Djiboune, A. , Sy, P. , Dieng, S. , Diouf, M. , Diouf, N. , Barry, A. and Diarra, M. (2017) Evaluation of the Effects of Irradiation of Peanut Grain by a Gamma-Ray Beam on Culture. Open Journal of Biophysics, 7, 94-100. doi: 10.4236/ojbiphy.2017.73008.
References

[1]   Ntare, B.R., Diallo, A.T., Ndjeunga, J. and Waliyar F. (2008) Groundnut Seed Production Manual. International Crops Research Institute for the Semi-Arid Tropics, 20 p.

[2]   Novak, F.J. and Brunner, H. (1992) Selection of Plants: Induced Mutations for Better Crops. IAEA Bulletin, 4, 25-33.

[3]   Bouharmont, J. (1994) Utilisation des mutations induites par la culture in vitro chez les plantes cultivées. Bulletin des Séances, Nouvelle Série, 40, 523-529.

[4]   Seung, G.W., Byung, Y.C., Jae-Sung, K. and Jin-Hong, K. (2007) Effects of Gamma Irradiation on Morphological Changes and Biological Responses in Plants. Micron, 38, 553-564.
https://doi.org/10.1016/j.micron.2006.11.002

[5]   Kovacs, E. and Keresztes, A. (2002) Effect of Gamma and UV-B/C Radiation on Plant Cell. Micron, 33, 199-210.
https://doi.org/10.1016/S0968-4328(01)00012-9

[6]   Zaka, R., Vandecasteele, C.M. and Misset, M.T. (2002) Effects of Low Chronic Doses of Ionizing Radiation on Antioxidant Enzymes and G6PDH Activities in Stipacapillata (Poaceae). Journal of Experimental Botany, 53, 1979-1987.
https://doi.org/10.1093/jxb/erf041

[7]   Wi, S.G., Chung, B.Y., Kim, J.-H., Baek, M.-H., Yang, D.H., Lee, J.-W. and Kim, J.-S. (2005) Ultrastructural Changes of Cell Organelles in Arabidopsis Stem after Gamma Irradiation. Journal of Plant Biology, 48, 195-200.
https://doi.org/10.1007/BF03030408

[8]   Kim, J.H., Chung, B.Y., Kim, J.S. and Wi, S.G. (2005) Effects of in Planta Gamma-Irradiation on Growth, Photosynthesis and Antioxidative Capacity of Red Pepper (Capsicum annuum L.) Plants. Journal of Plant Biology, 48, 47-56.
https://doi.org/10.1007/BF03030564

[9]   Long, T.P. and Kersten, H. (1936) Stimulation of Growth of Soy Bean Seeds by Soft X-Rays. Plant Physiology, 11, 515-621.
https://doi.org/10.1104/pp.11.3.615

[10]   Demicco, V., Arena, C., Pignalosa, D. and Durante, M. (2011) Effects of Sparsely and Densely Ionizing Radiation on Plants. Radiation and Environmental Biophysics, 50, 1-19.
https://doi.org/10.1007/s00411-010-0343-8

[11]   Arena, C., Demicco, V., Aronne, G., Pugliese, M., et al. (2013) Response of Phaseolus vulgaris L. Plants to Low-Let Ionizing Radiation: Growth and Oxidative Stress. Acta Astronautica, 91, 107-114.

[12]   Titov, V., Hohn, B. and Kovalchuk, I. (2000) Plants Experiencing Chronic Internal Exposure to Ionizing Radiation Exhibit Higher Frequency of Homologous Recom-bination than Acutely Irradiated Plants. Mutation Research, 449, 47-56.

[13]   Preussa, S.B. and Britta, A.B. (2003) A DNA-Damage-Induced Cell Cycle Check-point in Arabidopsis. Genetics, 164, 323-334.

[14]   Bowen, H.J.M. and Thiuk, J. (1961) Effects of seed Extracts on Radiosensitivity. Symposium on the Effects of Ionizing Radiation on Seeds IAEA, 75-82.

[15]   Gelin, O., Ehrenberg, L. and Blixth, S.T. (1958) Genetically Conditioned Influences on Radiation Sensitivity in Peas. Agr. Hort. Genetica., 16, 78-102.

[16]   Bilquez, A.F., Magne, C. and Martin, J.P. (1964) Bilan de six années de recherches sur l’emploi des rayonnements ionisants pour l’amélioration des plantes au Sénégal. Report of ORSTOM, Rome, Italy, 585-601.

[17]   Bilquez, A.F. and Martin, J.P. (1961) Différence variétale de sensibilité aux rayons X chez l’Arachide. Journal d’Agriculture Tropicale et de Botanique Appliquée, 8, 30-43.

[18]   Gojon, A., Meyer, C., Morot-Godry, J.-F. and Quillere, I. (1997) Nitrates: De l’azote Minéral à la matière organique. Revue BIOFUTUR, 171, 28-32.

[19]   Petit, J. and Jobin, P. (2005) La fertilisation organique des cultures. Fédération d’Agriculture Biologique du Québec, 48.

[20]   Messiga, A.J., Jaidi, N., Morel, C., et al. (2012) Long Term Impact of Tillage Practices and Biennal P and N Fertilization on Maize and Soybean Yields and Soil P Status. Field Crops Reacherch, 133, 10-22.

 
 
Top