AJAC  Vol.2 No.6 , October 2011
Thiocyanate Ion Selective Solid Contact Electrode Based on Mn Complex of N,N'-BIs-(4-Phenylazosalicylidene)-O-Phenylene Diamine Ionophore
Abstract: A thiocyanate ion selective poly(aniline) solid contact electrode based on manganese complex of N,N’-bis-(4-phenylazosalicylidene)-o-phenylene diamine ionophore was successfully developed. The electrode exhibits a good linear response of 58.1 mV/decade (at 20?C ± 0.2?C, r2 = 0.998) with in the concentration range of 1 × 10–1.0 ~ 1 × 10–5.8 M thiocyanate solution. The composition of this electrode was: ionophore 0.040, polyvinylchloride 0.300, dibutylphthalate 0.660 (mass). This dibutylphthalate plasticizer provides the best response characteristics. The electrode shows good selectivity for thiocyanate ion in comparison with any other anions and is suitable for use with aqueous solutions of pH 4.0 ~ 6.0. The standard deviations of the measured emf difference were ±1.70 and ±2.01 mV for thiocyanate sample solutions of 1.0 × 10–2 M and 1.0 × 10–3 M, respectively. The stabilization time was less than 170 sec. and response time was less than 17 sec.
Cite this paper: nullW. Han, T. Hong and Y. Lee, "Thiocyanate Ion Selective Solid Contact Electrode Based on Mn Complex of N,N'-BIs-(4-Phenylazosalicylidene)-O-Phenylene Diamine Ionophore," American Journal of Analytical Chemistry, Vol. 2 No. 6, 2011, pp. 731-738. doi: 10.4236/ajac.2011.26084.

[1]   W. Weuffen, C. Franzke and B. Turkow, “Fortschrittsbe-richt Zur Aliment?ren Aufnahme, Analytik und biologis-chen Bedeutung des Thiocyanats,” Nahrung, Vol 28, No. 4, 1984, pp. 341-355. doi:10.1002/food.19840280403

[2]   R. E. Bliss, K. A., “Problems with Thiocyanate as an Index of Smoking Status: A Critical Review with Sug-gestions with Improving the Usefulness of Biochemical Measures in Smoking Cessation Research,” Health Psy-chology, Vol. 3, No. 6, 1984, p. 563-581. doi:10.1037/0278-6133.3.6.563

[3]   K. Tsuge, M. Kataoka and Y. Seto, “Rapid Determination of Azide and Cyanide in Beverages Using Micro Diffu-sion Method Rapid Determination of Azide and Cyanide in Beverages Using Micro Diffusion Method,” Journal of Health Science, Vol. 46, 2000, p. 343.

[4]   Q. Li, W. Wei and Q. Liu, “Indirect Determination of Thiocyanate with Ammonium Sulfate and Ethanol by Extraction-Flotation of Copper,” Analyst, Vol. 125, No. 10, 2000, pp. 1885-1888. doi:10.1039/b004497k

[5]   R. G. Bowler, “The Determination of Thiocyanate in Blood Serum,” Biochemical Journal, Vol. 38, 1944, pp. 385-388.

[6]   A. R. Pettigrew and G. S. Fell, “Microdiffusion Method for Estimation of Cyanide in Whole Blood and Its Appli-cation to the Study of Conversion of Cyanide to Thi-ocyanate,” Clinical Chemistry, Vol. 18, 1972, pp. 996.

[7]   W. C. Butts, M. Kuehneman and G. M. Widdowson, “Automated Method for Determining Serum Thiocyanate, to Distinguish Smokers from Nonsmokers,” Clinical Chemistry, Vol. 20, No. 10, 1974, pp. 1344-1348.

[8]   S. Nagashima, “Simultaneous Reaction Rate Spectro-photometric Determination of Cyanide and Thiocyanate by Use of the Pyridine-Barbituric Acid Method,” Analytical Chemistry, Vol. 56, No. 11, 1984, pp. 1944-1947. doi:10.1021/ac00275a042

[9]   Y. K. Agrawal and P. N. Bhatt, “Spectrophotometric Determination of Thiocyanate Following Complexation with Mercury(II) and N-Phenylbenzohydroxamic Acid,” Analyst, Vol. 112, No. 12, 1987, pp. 1767-1769. doi:10.1039/an9871201767

[10]   T. Chikamoto and T. Maitani, “Gas Chromatographic Determination of Thiocyanate Ion in Biological Fluids Using Immobilized Phase-Transfer Catalyst for Derivati-zation,” Analytical Science, Vol. 2, No. 2, 1986, pp. 161- 164. doi:10.2116/analsci.2.161

[11]   S. Tanabe, M. Kitahara, N. Nawata and K. Kawanabe, “Determination of Oxidizable Inorganic Anions by High-Performance Liquid Chromatography with Fluo-rescence Detection and Application to the Determination of Salivary Nitrite and Thiocyanate and Serum Thiocyanat,” Journal of Chromatography, Vol. 424, 1988, p. 29.

[12]   Y. Michigami, T. Takahashi, F. He, Y. Yamamoto and K. Ueda, “Determination of Thiocyanate in Human Serum by Ion Chromatography,” Analyst, Vol. 113, No. 3, 1988, pp. 389-392. doi:10.1039/an9881300389

[13]   Y. Muira and T. Koh, “Determination of Thiocyanate in Human Urine Samples by Suppressed Ion Chromatogra-phy,” Analytical Science, Vol. 7, 1991, pp. 167-170. doi:10.2116/analsci.7.Supple_167

[14]   C. Bjergegaard, P. Moller and H. Sorensen, “Determina-tion of Thiocyanate, Iodide, Nitrate and Nitrite in Bio-logical Samples by Micellar Electrokinetic Capillary Chromatography,” Journal of Chromatography A, Vol. 717, No. 1-2, 1995, pp. 409-414. doi:10.1016/0021-9673(95)00554-1

[15]   S. H. Chen, Z. Y. Yang, H. L. Wu, H.S. Kou and S. J. Lin, “Determination of Thiocyanate Anion by High-Perfor- mance Liquid Chromatography with Fluorimetric Detec-tion,” Journal of Analytical Toxicology, Vol. 20, No. 1, 1996, pp. 38-42.

[16]   X. Cai and Z. Zhao, “Determination of Trace Thiocyanate by Linear Sweep Polarography,” Analytica Chimica Acta, Vol. 212, 1988, pp. 43-48. doi:10.1016/S0003-2670(00)84127-6

[17]   Z. Glatz, S. Nov’akov’a and H. Sterbova, “Analysis of Thiocyanate in Biological Fluids by Capillary Zone Elec-trophoresis,” Journal of Chromatography A, Vol. 916, No. 1-2, 2001, pp. 273-277. doi:10.1016/S0021-9673(00)01238-3

[18]   J. A. Cox, T. Gray and K. R. Kulkarni, “Stable Modified Electrodes for Flow-Injection Amperometry: Application to the Determination of Thiocyanate,” Analytical Chemistry, Vol. 60, No. 17, 1988, pp. 1710-1713. doi:10.1021/ac00168a015

[19]   A. Hodinar and A. Jyo, “Thiocyanate Solvent Polymeric Membrane Ion-Selective Electrode Based on Cobalt(III) α, β, γ, δ-Tetraphenylporphyrin Anion Carrier,” Chemistry Letters, Vol. 17, No. 6, 1988, pp. 993-996. doi:10.1246/cl.1988.993

[20]   D. Gao, J. Z. Li and R. Q. Yu, “Metalloporphyrin Deriva-tives as Neutral Carriers for PVC Membrane Electrodes,” Analytical Chemistry, Vol. 66, No. 12, 1994, pp. 2245- 2249. doi:10.1021/ac00086a008

[21]   D. Gao, J. Gu, R. Q. Yu and G.-D. Zheng, “Substituted Metalloporphyrin Derivatives as Anion Carrier for PVC Membrane Electrodes,” Analytica Chimica Acta, Vol. 302, No. 2-3, 1995, pp. 263-268. doi:10.1016/0003-2670(94)00447-T

[22]   D. V. Brown, N. A. Chaniotakis, I. H. Lee, S. C. Ma, S. B. Park, M. E. Meyerhoff, R. J. Nick and J. T. Groves, “Mn(III)—Porphyrin-Based Thiocyanate-Selective Membrane Electrodes: Characterization and Application in Flow Injection Determination of Thiocyanate in Saliva,” Electroanalysis, Vol. 1, No. 6, 1989, pp. 477-484. doi:10.1002/elan.1140010602

[23]   J. H. Khorasani, M. K. Amini, H. Motaghi, S. Tangesta-ninejad and M. Moghadam, “Manganese Porphyrin De-rivatives as Ionophores for Thiocyanate-Selective Elec-trodes: The Influence of Porphyrin Substituents and Ad-ditives on the Response Properties,” Sensors and Actua-tors B, Vol. 87, No. 3, 2002, pp. 448-456. doi:10.1016/S0925-4005(02)00294-0

[24]   M. Shamsipur, G. Khayatian and S. Tangestaninejad, “Thiocyanate-Selective Membrane Electrode Based on (Octabromotetraphenylporphyrinato) Manganese(III) Chlo- ride,” Electroanalysis, Vol. 11, No. 18, 1999, pp. 1340-1344. doi:10.1002/(SICI)1521-4109(199912)11:18<1340::AID-ELAN1340>3.0.CO;2-M

[25]   M. K. Amini, S. Shahrokhian and S. Tangestaninejad, “Thiocyanate-Selective Electrodes Based on Nickel and Iron Phthalocyanines,” Analytica Chimica Acta, Vol. 402, No. 2-3, 1999, pp. 137-143. doi:10.1016/S0003-2670(99)00549-8

[26]   M. K. Amini, S. Shahrokhian and S. Tangestaninejad, “PVC-Based Cobalt and Manganese Phthalocyanine Coated Graphite Electrodes for Determination of Thi-ocyanate,” Analytical Letters, Vol. 32, No. 14, 1999, pp. 2737-2750. doi:10.1080/00032719908543002

[27]   A. Florido, L. G. Bachas, M. Valiente and I. Villaescusa, “Anion-Selective Electrodes Based on a Gold(III)-Triiso- butylphosphine Sulfide Complex,” Analyst, Vol. 119, No. 11, 1994, pp. 2421-2425. doi:10.1039/an9941902421

[28]   Z. Q. Li, Z. Y. Wu, R. Yuan, M. Ying, G. L. Shen and R.Q. Yu, “Thiocyanate-Selective PVC Membrane Elec-trodes Based on Mn(II) Complex of N,N’-Bis-(4- Pheny-lazosalicylidene) O-Phenylene Diamine as a Neutral Car-rier,” Electrochimica Acta, Vol. 44, No. 15, 1999, pp. 2543-2548. doi:10.1016/S0013-4686(98)00361-2

[29]   M. R. Ganjali, T. Poursaberi, F. Basiripour, M. Salavati- Niassari, M. Yousefi and M. Shamsipur, “Highly Selec-tive Thiocyanate Poly(Vinyl Chloride) Membrane Elec-trode Based on a Cadmium-Schiff's Base Complex,” Fresenius’ Journal of Analytical Chemistry, Vol. 370, No. 8, 2001, pp. 1091-1095.

[30]   A. Abbaspour, M. A. Kamyabi, A. R. Esmaeilbeig and R. Kia, “Thiocyanate-Selective Electrode Based on Un-symmetrical Benzon4 Nickel(II) Macrocyclic Complexes,” Talanta, Vol. 57, No. 5, 2002, pp. 859-867. doi:10.1016/S0039-9140(02)00129-7

[31]   S. M. Lim, H. J. Jung, H. Won, N. Myung and K.-J. Paeng, “Potentiometric Behavior of the Membrane Elec-trodes Based on the Model Compound of a Ni-Por-phin- oid,” Analytical Science, Vol. 17, 2001, p. 1701.

[32]   M. Ying, R. Yuan, Z. Q. Li, Y. Q. Song, W. X. Li, H. G. Lin, G. L. Shen and R. Q. Yu, “Thiocyanate-Selective Electrode Based on Cobalt(II) Complexes of Pyrazolone Heterocyclic Schiff Bases,” Fresenius’ Journal of Ana-lytical Chemistry, Vol. 361, No. 5, 1998, pp. 437-441.

[33]   M. M. Ardakani, A. A. Ensafi, M. S. Niasari and S. C. Mirhoseini, “Selective Thiocyanate Poly(Vinyl Chloride) Membrane Based on a 1,8-Dibenzyl-1,3,6,8,10, 13-Hexaa- zacyclotetradecane-Ni(II) Perchlorate,” Analytica Chimica Acta, Vol. 462, No. 1, 2002, pp. 25-30. doi:10.1016/S0003-2670(02)00314-8

[34]   M. K. Amini, A. Rafi, M. Ghaedi, M. H. Habibi and M. M. Zohory, “Bis(2-Mercaptobenzoxazolato)Mercury(II) and Bis(2-Pyridinethiolato)Mercury(II) Complexes as Carriers for Thiocyanate Selective Electrodes,” Micro-chemical Journal, Vol. 73, No. 3, 2003, pp. 143-150. doi:10.1016/S0026-265X(03)00091-2

[35]   M. M. Ardakani, M. Salavati-Niassari and A. Sadegui, “Novel Selective Thiocyanate PVC Membrane Electrode Based on New Schiff Base Complex of 2.2-[(1,3-Di- me-thyl-1,3-Propanediylidene)Dinitrilo]Bis-Benzenethiolato Cadmium(II),” New Journal of Chemistry, Vol. 28, No. 5, 2004, pp. 595-599. doi:10.1039/b400681j

[36]   M. Shamsipur, S. Ershad, N. Samadi, A. R. Rezvani and H. Haddadzadeh, “The First Use of a Rh(III) Complex as a Novel Ionophore for Thiocyanate-Selective Polymeric Membrane Electrodes,” Talanta, Vol. 65, No. 4, 2005, pp. 991-997. doi:10.1016/j.talanta.2004.08.032

[37]   M. Shamsipur, T. Poursaberi, M. Rezapour, M. R. Gan-gali, M. F. Mousavi, V. Lippolis and D. R. Montesu, “[Cu(L)](NO3)2(L=4,7-Bis(3-aminopropyl)-1-thia-4,7-diazacyclononane) as a Suitable Ionophore for Construction of Thiocyanate-Selective Electrodes and Their Use in Determination of Urinary and Salivary Thiocyanate Concentration,” Electroanalysis, Vol. 16, No. 16, 2004, pp. 1336-1342. doi:10.1002/elan.200302957

[38]   S. S. M. Hassan, M. H. Abou Ghalia, A. G. E. Amr and A. H. K. Mohamed, “Novel Thiocyanate-Selective Mem-brane Sensors Based on Di-, Tetra-, and Hexa-Imidepyri- dine Ionophores,” Analytica Chimica Acta, Vol. 482, No. 1, 2003, pp. 9-18. doi:10.1016/S0003-2670(03)00172-7