[1] Turing, A.M. (1952) The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London Series B, 237, 37-72.
https://doi.org/10.1098/rstb.1952.0012
[2] Meinhardt, H. (1982) Models of Biological Pattern Formation. Academic Press, London, New York.
[3] Meinhardt, H. (1998) The Algorithmic Beauty of Sea Shells. 2nd Edition, Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-662-03617-4
[4] Gierer, A. and Meinhardt, H. (1972) A Theory of Biological Pattern Formation. Kybernetik (Berlin), 12, 30-39.
https://doi.org/10.1007/BF00289234
[5] Masuda, K. and Takahashi, K. (1987) Reaction-Diffusion Systems in the Gierer-Meinhardt Theory of Biological Pattern Formation. Japan Journal of Applied Mathematics, 4, 47-58.
https://doi.org/10.1007/BF03167754
[6] Maini, P.K., Wei, J. and Winter, M. (2007) Stability of Spikes in the Shadow Gierer-Meinhardt System with Robin Boundary Conditions. Chaos, 17, 037106.
https://doi.org/10.1007/BF03167754
[7] Ni, W.-M., Suzuki, K. and Takagi, I. (2006) The Dynamics of a Kinetic Activator-Inhibitor Systems. The Journal of Differential Equations, 229, 426-465.
https://doi.org/10.1016/j.jde.2006.03.011
[8] Dillon, R., Maini, P.K. and Othmer, H.G. (1994) Pattern Formation in Generalized Turing Systems. I. Steady-State Patterns in Systems with Mixed Boundary Conditions. The Journal of Mathematical Biology, 32, 345-393.
https://doi.org/10.1007/BF00160165
[9] Jiang, H. (2006) Global Existence of Solutions of an Activator-Inhibitor Systems. Discrete and Continuous Dynamical Systems, 14, 737-751.
https://doi.org/10.3934/dcds.2006.14.737
[10] Henry, D. (1981) Geometric Theory of Semilinear Parabolic Equations. Springer-Verlag, New York.
https://doi.org/10.1007/BFb0089647
[11] Pazy, A. (1983) Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York.
https://doi.org/10.1007/978-1-4612-5561-1