Back
 JECTC  Vol.1 No.2 , September 2011
Concerning The Effect of Surface Material on Nucleate Boiling Heat Transfer of R-113
Abstract: This paper presents results of an experimental investigation carried out to determine the effects of surface material on nucleate pool boiling heat transfer of refrigerant R113. Experiments were performed on horizontal circular plates of brass, copper and aluminum. The heat transfer coefficient was evaluated by measuring wall superheat and effective heat flux removed by boiling. The experiments were carried out in the heat flux range of 8 to 200 kW/m2. The obtained results have shown significant effect of surface material, with copper providing the highest heat transfer coefficient among the samples, and aluminum the least. There was negligible difference at low heat fluxes, but copper showed 23% better performance at high heat fluxes than aluminum and 18% better than brass.
Cite this paper: nullHosseini, R. , Gholaminejad, A. and Nabil, M. (2011) Concerning The Effect of Surface Material on Nucleate Boiling Heat Transfer of R-113. Journal of Electronics Cooling and Thermal Control, 1, 22-27. doi: 10.4236/jectc.2011.12003.
References

[1]   S. Nukiyama, “The Maximum and Minimum Values of the Heat Q Transmitted from Metal to Boiling Water under Atmospheric Pressure,” International Journal of Heat Mass Transfer, Vol. 9, No. 12, 1966. pp. 1419-1433. doi:10.1016/0017-9310(66)90138-4

[2]   V. K. Dhir, “Nucleate and Transition Boiling Heat Tran- sfer under Pool and External Flow Conditions,” International Journal of Heat Fluid Flow, Vol. 12, No. 4, 1991. pp. 290-314. doi:10.1016/0142-727X(91)90018-Q

[3]   I. L. Pioro, W. Rohsenow and S. S. Doerffer, “Nucleate Pool-Boiling Heat Transfer. I: Review of Parametric Effects of Boiling Surface,” International Journal of Heat Mass Transfer, Vol. 47, No. 23, 2004. pp. 5033-5044. doi:10.1016/j.ijheatmasstransfer.2004.06.019

[4]   P. J. Berenson, “Experiments on Pool-Boiling Heat Tran- sfer,” International Journal of Heat Mass Transfer, Vol. 5, No. 10, 1962. pp. 985-999. doi:10.1016/0017-9310(62)90079-0

[5]   S. K. Roy Chowdhury and R. H. S. Winterton, “Surface Effects in Pool Boiling,” International Journal of Heat Mass Transfer, Vol. 28, No. 10, 985. pp. 1881-1889.

[6]   D. Gorenflo, U. Chandra, S. Kotthoff and A. Luke, “Influence of Thermophysical Properties on Pool Boiling Heat Transfer of Refrigerants,” International Journal of Refrigeration, Vol. 27, No. 5, 2004. pp. 492-502. doi:10.1016/j.ijrefrig.2004.03.004

[7]   M.-G. Kang, “Effect of Surface Roughness on Pool Boiling Heat Transfer,” International Journal of Heat Mass Transfer, Vol. 43, No. 22, 2000. pp. 4073-4085. doi:10.1016/S0017-9310(00)00043-0

[8]   J. M. S. Jabardo, G. Ribatski and E. Stelute, “Roughness and Surface Material Effects on Nucleate Boiling Heat Transfer from Cylindrical Surfaces to Refrigerants R- 134a and R-123,” Experimental Thermal and Fluid Science, Vol. 33, No, 4, 2009. pp. 579-590. doi:10.1016/j.expthermflusci.2008.12.004

[9]   G. Ribatski and J. M. S. Jabardo, “Experimental Study of Nucleate Boiling of Halocarbon Refrigerants on Cylindrical Surfaces,” International Journal of Heat Mass Transfer, Vol. 46, No. 23, 2003. pp. 4439-4451. doi:10.1016/S0017-9310(03)00252-7

[10]   S. Kline and F. Mcclintock, “Describing Uncertainties in Single-Sample Experiments,” Mechanical Engineering, Vol. 75, 1953. pp. 3-8.

[11]   E. A. Farber and E. L. Scorah, “Heat Transfer to Water Boiling under Pressure,” Transactions of The ASME, Vol. 70, 1948. pp. 369-384.

[12]   S. T. Hsu, and F. W. Schmidt, “Measured Variations in Local Surface Temperatures in Pool Boiling of Water,” Journal of Heat Transfer, Vol. 83, 1961. pp. 254-260.

[13]   R. J. Benjamin, and A. R. Balakrishnan, “Nucleate Pool Boiling Heat Transfer of Pure Liquids at Low to Moderate Heat Fluxes,” International Journal of Heat Mass Transfer, Vol. 39, No. 12, 1996. pp. 2495-2504. doi:10.1016/0017-9310(95)00320-7

[14]   S. K. R. Chowdhury and R. H. S. Winterton, “Surface Effects in Pool Boiling,” International Journal of Heat Mass Transfer, Vol. 28, No. 10, 1985. pp. 1881-1889. doi:10.1016/0017-9310(85)90210-8

[15]   S. M. You, T. W. Simon, A. Bar-Cohen and W. Tong, “Experimental Investigation of Nucleate Boiling Incipience with a Highly-Wetting Dielectric Fluid (R-113),” International Journal of Heat and Mass Transfer, Vol. 33, No. 1, 1990. pp. 105-117. doi:10.1016/0017-9310(90)90145-K

[16]   K. Cornwell and J. G. Einarsson, “Influence of Fluid Flow on Nucleate Boiling from a Tube,” Experimental Heat Transfer, Vol. 3, 1990. pp. 101-116. doi:10.1080/08916159008946380

[17]   M. G. Cooper, “Heat Flow Rates in Saturated Nucleate Pool Boiling—A Wide-Ranging Examination Using Reduced Properties,” Advances in Heat Transfer. Vol. 16, 1984, pp. 157-239. doi:10.1016/S0065-2717(08)70205-3

[18]   K. T. Hong, H. Imadojemu and R. L. Webb, “Effects of Oxidation and Surface Roughness on Contact Angle,” Experimental Thermal and Fluid Science, Vol. 8, No. 4, 1994. pp. 279-285. doi:10.1016/0894-1777(94)90058-2

[19]   M. Mann, K. Stephan and P. Stephan, “Influence of Heat Conduction in the Wall on Nucleate Boiling Heat Transfer,” International Journal of Heat and Mass Transfer, Vol. 43, No. 12, 2000. pp. 2193-2203. doi:10.1016/S0017-9310(99)00292-6

[20]   R. Braun, “Waèrmeuè Bergang Beim Blasensieden an Der Au?enseite Von Geschmirgelten Und Sandgestrahlten Rohren Aus Kupfer, Messing Und Edelstahl. Diss., Universitaèt Karlsruhe (Th),” 1992.

 
 
Top