[1] Ghia, U. and Ghia, K.N. and Shin, C.T. (1982) High-Re Solution for Incompressible Flow Usingg the Navier-Stokes Equations and a Multigrid Method. Journal of Computational Physics, 48, 13-15.
[2] Cha, C.K. and Jaluria, Y. (1984) Recirculating Mixed Convection Flow for Energy Extraction. International Journal of Heat and Mass Transfer, 27, 1801-1812.
[3] Hsu, T.H. and Hsu, P.T. and How, S.P. (1997) Mixed Convection in a partially Divided Rectrangular Enclosure. Numerical Heat Transfer, Part A: Applications, 31, 655-683.
https://doi.org/10.1080/10407789708914058
[4] Hsu, T.H. and Wang, S.G. (2000) Mixed Convection in a Rectrangular Enclosure with Discrete Heat Sources. Numerical Heat Transfer, Part A: Applications, 38, 627-652.
https://doi.org/10.1080/104077800750021170
[5] Fedorov, A.G. and Visakanta, R. (2000) Three-Dimensional Conjugate Heat Transfer in the Microchannel Heat Sink for Electronic Packaging. International Journal of Heat and Mass Transfer, 43, 399-415.
[6] Leong, C.W. and Ottono, J.M. (1989) Experiments on Mixing Due to Chaotic Advection in a Cavity. Journal of Fluid Mechanics, 209, 463-499. https://doi.org/10.1017/S0022112089003186
[7] Alleborn, N. and Rasziller, H. (1999) Lid-Driven Cavity with Heat and Mass Transport. International Journal of Heat and Mass Transfer, 42, 833-853.
[8] Imberger, J. (1982) Dynamics of Lakes, Reservoirs and Cooling Ponds. Annual Review of Fluid Mechanics, 14, 153-187. https://doi.org/10.1146/annurev.fl.14.010182.001101
[9] Prasad, A.K. and Koseff, J.R. (1996) Combined Forced and Mixed Convection Heat Transfer in a Deep Lid-Driven Cavity Flow. International Journal of Heat and Fluid Flow, 17, 460-467.
[10] Elsherbiny, S.M. (1996) Free Convection in Inclined Air layers Heated from Above. International Journal of Heat and Mass Transfer, 39, 3925-3930.
[11] Prasad, Y.S. and Das, M.K. (2007) Hopt Bifurcation in Mixed Convection Flow inside a Rectangular Cavity. International Journal of Heat and Mass Transfer, 50, 3583-3598.
[12] Basak, T., Roy, S., Sharma, P.K. and Pop, I. (2009) Analysis of Mixed Convection Flows within a Square Cavity with Uniform and Non-Uniform Heating of Bottom Wall. International Journal of Thermal Sciences, 48, 891-912.
[13] Cheng, T.S. and Liu, W.H. (2010) Effect of Temperature Gradient Orientation on the Characteristics of Mixed Convection Flow in a Lid-Driven Square Cavity. Computers and Fluids, 39, 965-978.
[14] Erturk, E. and Gokol, C. (2006) Fourth Order Compact Formulation of Navier-Stokes Equations and Driven Cavity Flow at High Reynolds Numbers. Numerical Methods in Fluids, 50, 421-436.
[15] Cheng, T.S. (2011) Characteristics of Mixed Convection Heat Transfer in a Lid-Driven Square Cavity with Various Richardson and Prandtl Numbers. International Journal of Thermal Sciences, 50, 197-205.
[16] Ahmed, S.E., Oztop, H.F. and Al-Salem, K. (2016) Effects of Magnetic Field and Viscous Dissipation on Entropy Generation of Mixed Convection in Porous Lid-Driven Cavity with Corner Heater. International Journal of Numerical Methods for Heat and Fluid Flow, 26, 1548-1566. https://doi.org/10.1108/HFF-11-2014-0344
[17] Malleswaran, A. and Sivasankaran, S. (2016) A Numerical Simulation on MHD Mixed Convection in a Lid-Driven Cavity with Corner Heaters. Journal of Applied Fluid Mechanics, 9, 311-319. https://doi.org/10.18869/acadpub.jafm.68.224.22903
[18] Kareem, A.K., Gao, S. and Ahmed, A.Q. (2016) Unsteady Simulations of Mixed Convection Heat Transfer in a 3D Closed Lid-Driven Cavity. International Journal of Heat and Mass Transfer, 100, 121-130.
[19] Bettaibi, S., Sediki, E., Kuznik, F. and Succi, S. (2015) Lattice Boltzmann Simulation of Mixed Convection Heat Transfer in a Driven Cavity with Non-Uniform Heating of the Bottom Wall. Communications in Theoretical Physics, 63, 91-100.
https://doi.org/10.1088/0253-6102/63/1/15
[20] Hussein, I.Y. and Ali, L.F. (2014) Mixed Convection in a Square Cavity Filled with Porous Medium with Bottom Wall Periodic Boundary Condition. Journal of Engineering, 20, 99-119.
[21] Ismael, M.A., Pop, I. and Chamkha, A.J. (2014) Mixed Convection in a Lid-Driven Cavity with Partial Slip. International Journal of Thermal Sciences, 82, 47-61.
[22] Mahapatra, T.R., Pal, D. and Mondal, S. (2013) Effects of Buoyancy Ratio on Double-Diffusive Natural Convection in a Lid-Driven Cavity. International Journal of Heat and Mass Transfer, 57, 771-785.
[23] Mekroussi, S., Nehari, D., Bouzit, M. and Chemloul, N.E.S. (2013) Analysis of Mixed Convection in an Inclined Lid-Driven Cavity with a Wavy Wall. Journal of Mechanical Science and Technology, 27, 2181-2190. https://doi.org/10.1007/s12206-013-0533-9
[24] Al-Salem, K., Oztop, H.F., Pop, I. and Varol, Y. (2012) Effects of Moving Lid Direction on MHD Mixed Convection in a Linearly Heated Cavity. International Journal of Heat and Mass Transfer, 55, 1103-1112.
[25] Basak, T., Pradeep, P.V.K., Roy, S. and Pop, I. (2011) Finite Element Based Heatline Approach to Study Mixed Convection in a Porous Square Cavity with Various Wall Thermal Boundary Conditions. International Journal of Heat and Mass Transfer, 54, 1706-1727.
[26] Mamourian, M., Shirvan, K.M. and Rahimi, R.E.A.B. (2016) Optimization of Mixed Convection Heat Transfer with Entropy Generation in a Wavy Surface Square Lid-Driven Cavity by means of Taguchi Approach. International Journal of Heat and Mass Transfer, 102, 544-554.
[27] Nayak, R.K., Bhattacharyya, S. and Pop, I. (2016) Numerical Study of Mixed Convection and Entropy Generation of Cu-Water Nanofluid in a Differentially Heated Skewed Enclosure. International Journal of Heat and Mass Transfer, 85, 620-634.
[28] Kefayati, G.H.R. (2015) FDLBM Simulation of Mixed Convection in a Lid-Driven Cavity Filled with Non-Newtonian Nanofluid in the Presence of Magnetic Field. International Journal of Thermal Sciences, 95, 29-46.
[29] Kefayati, G.H.R. (2014) Mixed Convection of Non-Newtonian Nanofluid in a Lid-Driven Enclosure with Sinusoidal Temperature Profile using FDLBM. Powder Technology, 256, 268-281.
[30] Jamai, H., Fakhreddine, S.O. and Sammouda, H. (2014) Numerical Study of Sinusoidal Temperature in Magneto-Convection. Journal of Applied Fluid Mechanics, 3, 493-502.
[31] Kefayati, G.H.R., Bandpy, M.G., Sajjadi, H. and Ganji, D.D. (2012) Lattice Boltzmann Simulation of MHD Mixed Convection in Lid-Driven Square Cavity with Linearly Heated Wall. Scientia Iranica, 19, 1053-1065.
[32] Arani, A.A.A., Sebdani, S.M., Mahmoodi, M., Ardeshiri, A. and Aliakbari, M. (2012) Numerical Study of Mixed Convection Flow in a Lid-Driven Cavity with Sinusoidal on Sidewalls Using Nanofluid. Superlattices and Microstructures, 51, 893-911.
[33] Nasrin, R. (2010) Mixed Magnetoconvection in a Lid-Driven Cavity with a Sinusoidal Wavy Wall and a Central Heat Conducting Body. Journal of Naval Architecture and Marine Engineering, 7, 13-24. https://doi.org/10.3329/jname.v8i1.6793
[34] Karimipour, A., Efse, M.H., Safaei, M.R., Semiromi, D.T., Jafari, S. and Kazi, S.N. (2014) Mixed Convection of Copper-Water Nanofluid in a Shallow Inclined Lid Driven Cavity Using the Lattice Boltzmann Method. Physica A: Statistical Mechanics and Its Applications, 402, 150-168.
[35] Chamkha, A.J. and Abu-Nada, E. (2012) Mixed Convection Flow in Single- and Double-Lid Driven Square Cavities Filled with Water-Al2O3 Nanofluid: Effect of Viscosity Models. European Journal of Mechanics B-Fluids, 36, 82-96.
[36] Garoosi, F. and Rashidi, M.M. (2015) Two Phase Simulation of Natural Convection and Mixed Convection of the Nanofluid in a Square Cavity. Powder Technology, 275, 239-256.
[37] Billah, M.M., Rahman, M.M., Sharif, U.M., Rahim, N.A., Sadidur, R. and Hasanuzzaman, M. (2011) Numerical Analysis of Fluid Flow Due to Mixed Convection in a Lid-Driven Cavity Having a Heated Circular Hollow Cylinder. International Communications in Heat and Mass Transfer, 38, 1093-1103.
[38] Wesseling, P. (1982) Theoretical and Practical Aspects of a Multigrid Method. SIAM Journal on Scientific and Statistical Computing, 3, 387-407. https://doi.org/10.1137/0903025
[39] Zhang, J. (2003) Numerical Simulation of 2D Square Driven Cavity Using Fourth Order Compact Finite Difference Scheme. Computers and Mathematics with Applications, 45, 43-52.
[40] Botella, O. and Peyret, R. (1998) Benchmark Spectral Results on the Lid-Driven Cavity Flow. Computers and Fluids, 27, 421-433.
[41] Bruneau, C.H. and Saad, M. (1998) The 2D Lid-Driven Cavity Problem Revised. Computers and Fluids, 35, 326-348.
[42] Iwatsu, R., Hyun, J.M. and Kuwamura, K. (1993) Mixed Convection in a Driven Cavity with a Stable Vertical Temperature Gradient. International Journal of Heat and Mass Transfer, 36, 1601-1608.
[43] Sharif, M.A.R. (2007) Laminar Mixed Convection in Shallwl Inclined Driven Cavities with Hot Moving Lid on Top and Cooled from Bottom. Applied Thermal Engineering, 27, 1036-1042.
[44] Koseff, J.R. and Street, R.L. (1984) Visualization Studies of a Shear Driven Three-Dimensional Re-Circulating Flow. Journal of Fluids Engineering, 106, 21-29.
https://doi.org/10.1115/1.3242393
[45] Koseff, J.R. and Street, R.L. (1984) The Lid-Driven Cavity Flow: A Synthesis of Qualitative and Quantitative Observations. Journal of Fluids Engineering, 106, 390-398.
https://doi.org/10.1115/1.3243136
[46] Moallemi, M.K. and Jang, K.S. (1992) Prandtl Number Effects on Laminar Mixed Convection Heat Transfer in a Lid-Driven Cavity. International Journal of Heat and Mass Transfer, 35, 1881-1892.
[47] Torrance, K., Davis, R., Eike, K., Gill, P., Gutman, D., Hsui, A., Lyons, S. and Zien, H. (1972) Cavity Flows Driven by Buoyancy and Shear. Journal of Fluid Mechanics, 51, 221-213.
https://doi.org/10.1017/S0022112072001181
[48] Schreiber, R. (1983) Driven Cavity Flows by Efficient Numerical Techniques. Journal of Computational Physics, 49, 310-333.