Back
 IJOC  Vol.7 No.2 , June 2017
Synthesis of Chiral Schiff Base Metal Complex Inducing CD and Elucidation of Structure of Adsorption on Surface of Gold Nanoparticles
Abstract: We have prepared supramolecular systems of chiral Schiff base Ni(II), Cu(II), Zn(II) complexes and colloidal gold nanoparticles (AuNP) of 10 nm diameters. They demonstrated that direct adsorption of chiral Schiff base metal complex on the surface of AuNP owing to observation of clear induced CD spectra for the first time. We observed and discussed induced CD bands on AuNP from chiral Schiff base Ni(II), Cu(II), Zn(II) complexes.
Cite this paper: Oshima, M. , Matsuno, M. , Yuki, T. , Nobumitsu, S. , Haraguchi, T. and Akitsu, T. (2017) Synthesis of Chiral Schiff Base Metal Complex Inducing CD and Elucidation of Structure of Adsorption on Surface of Gold Nanoparticles. International Journal of Organic Chemistry, 7, 153-170. doi: 10.4236/ijoc.2017.72013.
References

[1]   Liz-Marzán, L.M. (2004) Formation and Color. Nanometals. Mater. Today, 7, 26- 31. https://doi.org/10.1016/S1369-7021(04)00080-X

[2]   Chen, H., Ming, T., Zhao, L., Wang, F., Sun, L.D., Wang, J. and Yan, C.H. (2010) Plasmon-Molecule Interactions. Nano Today, 5, 494-505.
https://doi.org/10.1016/j.nantod.2010.08.009

[3]   Knight, M.W., Sobhani, H., Nordlander, P. and Halas, N.J. (2011) Photodetection with Active Optical Antennas. Science, 332, 702-704.
https://doi.org/10.1126/science.1203056

[4]   Christopher, P., Xin, H. and Linic, S. (2011) Visible-Light-Enhanced Catalytic Oxidation Reactions on Plasmonic Silver Nanostructures. Nature Chemistry, 3, 467- 472. https://doi.org/10.1038/nchem.1032

[5]   Wang, C.L. and Didier, A. (2014) Nanogold Plasmonic Photocatalysis for Organic Synthesis and Clean Energy Conversion. Chemical Society Reviews, 43, 7188-7216.
https://doi.org/10.1039/C4CS00145A

[6]   Lakowicz, J.R., Ray, K., Chowdhury, M., Szmacinski, H., Fu, Y., Zhang, J. and Nowaczyk, K. (2008) Plasmon-Controlled Fluorescence: A New Paradigm in Fluorescence Spectroscopy. Analyst, 133, 1308-1346.
https://doi.org/10.1039/b802918k

[7]   Nie, S. and Emory, S.R. (1997) Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science, 275, 1102-1106.
https://doi.org/10.1126/science.275.5303.1102

[8]   Xu, L., Kuang, H., Wang, L. and Xu, C. (2011) Gold Nanorod Ensembles as Artificial Molecules for Applications in Sensors. Journal of Materials Chemistry, 21, 16759-16782.
https://doi.org/10.1039/c1jm11905b

[9]   Lee, A., Andrade, G.F.S., Ahmed, A., Souza, M.L., Coombs, N., Tumarkin, E., Liu, K., Gordon, R., Brolo, A.G. and Kumacheva, E. (2011) Probing Dynamic Generation of Hot-Spots in Self-Assembled Chains of Gold Nanorods by Surface-Enhanced Raman Scattering. Journal of the American Chemical Society, 133, 7563-7570.
https://doi.org/10.1021/ja2015179

[10]   Choulis, S.A., Mathai, M.K. and Choong, V.E. (2006) Influence of Metallic Nanoparticles on the Performance of Organic Electrophosphorescence Devices. Applied Physics Letters, 88, 213503.
https://doi.org/10.1063/1.2200285

[11]   Huang, J.S., Kern, J., Geisler, P., Weinmann, P., Kamp, M., Forchel, A., Biagioni, P. and Hecht, B. (2010) Mode Imaging and Selection in Strongly Coupled Nanoantennas. Nano Letters, 10, 2105-2110.
https://doi.org/10.1021/nl100614p

[12]   Liu, N., Mukherjee, S., Bao, K., Brown, L.V., Dorfmüller, J., Nordlander, P. and Halas, N.J. (2011) Magnetic Plasmon Formation and Propagation in Artificial Aromatic Molecules. Nano Letters, 12, 364-369.
https://doi.org/10.1021/nl203641z

[13]   Kuzyk, A., Schreiber, R., Fan, Z., Pardatscher, G., Rolle, E.M., Hogele, A., Simmel, F.C., Govorov, A.O. and Liedl, T. (2012) DNA-Based Self-Assembly of Chiral Plasmonic Nanostructures with Tailored Optical Response. Nature, 483, 311-314.
https://doi.org/10.1038/nature10889

[14]   Guerrero, M.A., Augié, B., Alonso, G.J.L., Dzolic, Z., Gómez G.S., Zinic, M., Cid, M.M. and Liz-Marzán, L.M. (2011) Intense Optical Activity from Three-Dimensional Chiral Ordering of Plasmonic Nanoantennas. Angewandte Chemie International Edition, 50, 5499-5503.
https://doi.org/10.1002/anie.201007536

[15]   Auguié, B., Alonso, G.J.L., Guerrero, M.A. and Liz-Marzán, L.M. (2011) Fingers Crossed: Optical Activity of a Chiral Dimer of Plasmonic Nanorods. Journal of Physical Chemistry Letters, 2, 846-851.
https://doi.org/10.1021/jz200279x

[16]   Wang, R.Y., Wang, H., Wu, X., Ji, Y., Wang, P., Qu, Y. and Chung, T.S. (2011) Chiral Assembly of Gold Nanorods with Collective Plasmonic Circular Dichroism Response. Soft Matter, 7, 8370-8375.
https://doi.org/10.1039/c1sm05590a

[17]   Colleen, M.A., Mathew, M.M. and James, C.D. (2011) DNA-Capped Nanoparticles Designed for Doxorubicin Drug Delivery. Chemical Communications, 47, 3418-3420.
https://doi.org/10.1039/c0cc04916f

[18]   Ben-Moshe A., Maoz, B.M., Govorov A.O. and Markovich, G. (2013) Chirality and Chiroptical Effects in Inorganic Nanocrystal Systems with Plasmon and Exciton Resonances. Chemical Society Reviews, 42, 7028-7041.
https://doi.org/10.1039/c3cs60139k

[19]   Govorov, A.O. and Fan, Z. (2012) Theory of Chiral Plasmonic Nanostructures Comprising Metal Nanocrystals and Chiral Molecular Media. ChemPhysChem, 13, 2551-2560.
https://doi.org/10.1002/cphc.201100958

[20]   Govorov, A.O., Fan, Z., Hernandez, P., Slocik, J.M. and Nail, R.R. (2010) Theory of Circular Dichroism of Nanomaterials Comprising Chiral Molecules and Nanocrystals: Plasmon Enhancement, Dipole Interactions, and Dielectric Effects. Nano Letters, 10, 1374-1382.
https://doi.org/10.1021/nl100010v

[21]   Barron, L.D. and Buckingham, A.D. (2001) Time Reversal and Molecular Properties. Accounts of Chemical Research, 34,781-789.
https://doi.org/10.1021/ar0100576

[22]   Noguez, C. and Garzon, I.L. (2009) Optically Active Metal Nanoparticles. Chemical Society Reviews, 38, 757-771.
https://doi.org/10.1039/b800404h

[23]   Roy, S. and Pericas, M.A. (2009) Functionalized Nanoparticles as Catalysts for Enantioselective Processes. Organic & Biomolecular Chemistry, 7, 2669-2677.
https://doi.org/10.1039/b903921j

[24]   Tatiana, P., Elvis, C.M. and Ting, I.P. (2014) Chiral Effects in Amino Acid Adsorption on Au(111): A Comparison of Cysteine, Homocysteine and Methionine. Surface Science, 629, 20-27.
https://doi.org/10.1016/j.susc.2014.01.018

[25]   Chapman, C.R.L., Ting, E.C.M., Kereszti, A. and Paci, I. (2013) Self-Assembly of Cysteine Dimers at the Gold Surface: A Computational Study of Competing Interactions. The Journal of Physical Chemistry C, 117, 19426-19435.
https://doi.org/10.1021/jp405478n

[26]   Park, J.W. and Jennifer S. (2014) Structural Study of Citrate Layers on Gold Nanoparticles: Role of Intermolecular Interactions in Stabilizing Nanoparticles. Journal of the American Chemical Society, 136, 1907-1921.
https://doi.org/10.1021/ja4097384

[27]   Akitsu, T., Uchida, N., Aritake, Y. and Yamaguchi, J. (2008) Induced d-d Bands in CD Spectra Due to Chiral Transfer from Chiral Nickel(II) Complexes to Achiral Copper(II) Complexes and Application for Structural Estimation. Trends in Inorganic Chemistry, 10, 41-49.

[28]   Akitsu, T. and Uchida, N. (2010) Induced d-d Bands in CD Spectra of Solution of Chiral Schiff Base Nickel(II) Complex and Ferrocene. Asian Chemistry Letters, 14, 21-28.

[29]   Akitsu, T., Yamaguchi, J., Uchida, N. and Aritake, Y. (2009) The Studies of Conditions for Inducing Chirality to Cu(II) Complexes by Chiral Zn(II) and Ni(II) Complexes with Schiff Base. Research Letters in Materials Science, 2009, Article ID: 484172.
https://doi.org/10.1155/2009/484172

[30]   Akitsu, T., Yamaguchi, J., Aritake, Y., Hiratsuka, T. and Uchida, N. (2010) Observation of Enhanced CD Bands of Metal Complexes, Metallodendrimers, and Metal Clusters by Chiral Schiff Base Metal Complexes. International Journal of Current Research, 1, 1-6.

[31]   Akitsu, T., Aritake, Y., Nakayama, T. and Nishizuru, H. (2011) Observation of Induced CD on CdSe Nano-Particles from Chiral Schiff Base Ni(II), Cu(II), Zn(II) Complexes. Inorganic Chemistry Communications, 14, 423-425.
https://doi.org/10.1016/j.inoche.2010.12.017

[32]   Yamaguchi, J. and Akitsu, T. (2011) Molecular Recognition of Chiral Schiff Base Metal Complexes for Induced CD Bands to Metallodendrimers. International Journal of Current Research, 2, 165-172.

[33]   Kominato, C. and Akitsu, T. (2012) Computational Study on UV-Vis and CD Spectra of Chiral Schiff Base Ni(II), Cu(II), and Zn(II) Complexes for Discussion of Induced CD. Journal of Chemistry and Chemical Engineering,, 6, 199-208.

[34]   Akitsu, T. and Kominato, C. (2013) Molecular Recognition of Trans-Chiral Schiff Base Metal Complexes for Induced CD. An Integrated View of the Molecular Recognition and Toxinology—From Analytical Procedures to Biomedical Applications, InTech, Rijeka, 515-532.
https://doi.org/10.5772/52226

[35]   Kimura, N., Nishizuru, H., Aritake, Y. and Akitsu, T. (2013) Observation of Reciprocal Induced CD between Colloidal Gold Nanoparticles and Chiral Schiff Base Zn(II) Complexes with Parallel Dipole Moments. Journal of Chemistry and Chemical Engineering, 7, 390-394.

[36]   Hiratsuka, T., Shibata, H. and Akitsu, T. (2012) Structures and Properties of 3d-4f and 3d Chiral Schiff Base Complexes. Nova Science Publishers, New York, 45-64.

[37]   Pooyan, M., Abolfazl, G., Mahdi, B. and Hadi, A. (2013) Tetradentate N2O2 Type Nickel(II) Schiff Base Complexes Derived from Meso-1,2-diphenyle-1,2-ethylene-diamine: Synthesis, Characterization, Crystal Structures, Electrochemistry, and Catalytic Studies. Journal of Coordination Chemistry, 66, 4255-4267.
https://doi.org/10.1080/00958972.2013.867031

[38]   Kusum, K.B., Galla, V.K. and Kommuru, G. (2013) Enantioselective Henry Reaction Catalyzed by “Ship in a Bottle” Complexes. Inorganic Chemistry, 52, 8017-8029.
https://doi.org/10.1021/ic400599c

[39]   Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J. and Fox, D.J. (2009) GAUSSIAN 09 (Revision A.1). Gaussian, Inc., Wallingford, CT.

[40]   Rietveld, H.M. (1969) A Profile Refinement Method for Nuclear and Magnetic Structures. Journal of Applied Crystallography, 2, 65-71.
https://doi.org/10.1107/S0021889869006558

[41]   Sheldrick, G.M. (2008) A Short History of SHELX. Acta Crystallographica, A64. 112-122.
https://doi.org/10.1107/S0108767307043930

[42]   Teranishi, T. and Kanehara, M. (2008) Strategy to Fabricate Small Gold Nanoparticle Superlattices and Application to Nano-electronic Device. The Journal of the Vacuum Society of Japan, 51, 731-736.

 
 
Top