Back
 CWEEE  Vol.6 No.3 , July 2017
Water Quality Evaluation Using Back Propagation Artificial Neural Network Based on Self-Adaptive Particle Swarm Optimization Algorithm and Chaos Theory
Abstract: To overcome the shortcomings of the traditional methods of water quality evaluation, in this paper, a novel model combines particle swarm optimization (PSO), chaos theory, self-adaptive strategy and back propagation artificial neural network (BP ANN) that was proposed to evaluate the water quality of Weihe River in China. An improved PSO algorithm with a self-adaptive inertia weight and a chaotic learning factor tuned by logistic function was developed and used to optimize the network parameters of BP ANN. The values of average absolute deviation (AAD), root mean square error of prediction (RMSEP) and squared correlation coefficient are 0.0061, 0.0163 and 0.9903, respectively. Compared with other methods, such as BP ANN, and PSO BP ANN, the proposed model displays optimal prediction performance with high precision and good correlation. The results show that the proposed method has the good prediction ability for evaluating water quality. It is convenient, reliable and high precision, which provides good analysis and evaluation method for water quality.
Cite this paper: Li, M. , Wu, W. , Chen, B. , Guan, L. and Wu, Y. (2017) Water Quality Evaluation Using Back Propagation Artificial Neural Network Based on Self-Adaptive Particle Swarm Optimization Algorithm and Chaos Theory. Computational Water, Energy, and Environmental Engineering, 6, 229-242. doi: 10.4236/cweee.2017.63016.
References

[1]   Aragones, L., Lopez, I., Palazon, A., Lopez-Ubeda, R. and Garcia, C. (2016) Evaluation of the Quality of Coastal Bathing Waters in Spain through Fecal Bacteria Escherichia coli and Enterococcus. Science of the Total Environment, 566, 288-297.

[2]   Kapembo, M.L., Laffite, A., Bokolo, M.K., Mbanga, A.L., Maya-Vangua, M.M., Otamonga, J.-P., Mulaji, C.K., Mpiana, P.T., Wildi, W. and Pote, J. (2016) Evaluation of Water Quality from Suburban Shallow Wells under Tropical Conditions According to the Seasonal Variation, Bumbu, Kinshasa, Democratic Republic of the Congo. Exposure and Health, 8, 487-496.
https://doi.org/10.1007/s12403-016-0213-y

[3]   Sener, S., Sener, E. and Davraz, A. (2017) Evaluation of Water Quality Using Water Quality Index (WQI) Method and GIS in Aksu River (SW-Turkey). The Science of the Total Environment, 584-585, 131-144.

[4]   Bahmani, O., Sabziparvar, A.A. and Khosravi, R. (2017) Evaluation of Yield, Quality and Crop Water Stress Index of Sugar Beet under Different Irrigation Regimes. Water Science and Technology: Water Supply, 17, 571-578.
https://doi.org/10.2166/ws.2016.163

[5]   Liang, S., Jia, H., Xu, C., Xu, T. and Melching, C. (2016) A Bayesian Approach for Evaluation of the Effect of Water Quality Model Parameter Uncertainty on TMDLs: A Case Study of Miyun Reservoir. Science of the Total Environment, 560, 44-54.

[6]   Gholizadeh, M.H., Melesse, A.M. and Reddi, L. (2016) Discriminant Analysis Application in Spatiotemporal Evaluation of Water Quality in South Florida. Journal of Hydroinformatics, 18, 1019-1032.
https://doi.org/10.2166/hydro.2016.023

[7]   Shahryari, A., Nikaeen, M., Hatamzadeh, M., Vahid Dastjerdi, M. and Hassanzadeh, A. (2016) Evaluation of Bacteriological and Chemical Quality of Dialysis Water and Fluid in Isfahan, Central Iran. Iranian Journal of Public Health, 45, 650-656.

[8]   Ender, A., Goeppert, N., Grimmeisen, F. and Goldscheider, N. (2017) Evaluation of Beta-D-Glucuronidase and Particle-Size Distribution for Microbiological Water Quality Monitoring in Northern Vietnam. Science of the Total Environment, 580, 996-1006.

[9]   Zare Abyaneh, H. (2014) Evaluation of Multivariate Linear Regression and Artificial Neural Networks in Prediction of Water Quality Parameters. Journal of Environmental Health Science & Engineering, 12, 40.
https://doi.org/10.1186/2052-336X-12-40

[10]   Varol, S. and Davraz, A. (2016) Evaluation of Potential Human Health Risk and Investigation of Drinking Water Quality in Isparta City Center (Turkey). Journal of Water and Health, 14, 471-488.
https://doi.org/10.2166/wh.2015.187

[11]   Fernandez-Cassi, X., Silvera, C., Cervero-Arago, S., Rusinol, M., Latif-Eugeni, F., Bruguera-Casamada, C., Civit, S., Araujo, R.M., Figueras, M.J., Girones, R. and Bofill-Mas, S. (2016) Evaluation of the Microbiological Quality of Reclaimed Water Produced from a Lagooning System. Environmental Science and Pollution Research, 23, 16816-16833.
https://doi.org/10.1007/s11356-016-6812-0

[12]   Wang, J., Liu, G., Liu, H. and Lam, P.K.S. (2017) Multivariate Statistical Evaluation of Dissolved Trace Elements and a Water Quality Assessment in the Middle Reaches of Huaihe River, Anhui, China. Science of the Total Environment, 583, 421-431.
https://doi.org/10.1016/j.scitotenv.2017.01.088

[13]   Ma, L., Zhou, L. and Wang, T. (2014) Comprehensive Evaluation of Water Quality in Dahuofang Reservoir Based on BP Neural Network. Journal of Shenyang Agricultural University, 45, 637-640.

[14]   Li, R. and Qiao, J. (2015) A New Water Quality Evaluation Model Based on Simplified Hopfield Neural Network. In: Zhao, Q. and Liu, S., Eds., 2015 34th Chinese Control Conference, Institute of Electrical and Electronics Engineers, Hangzhou, 3530-3535.

[15]   He, J. (2016) Probabilistic Evaluation of Causal Relationship between Variables for Water Quality Management. Journal of Environmental Informatics, 28, 110-119.

[16]   Li, B., Yang, G., Wan, R., Zhang, L., Zhang, Y. and Dai, X. (2017) Using Fuzzy Theory and Variable Weights for Water Quality Evaluation in Poyang Lake, China. Chinese Geographical Science, 27, 39-51.
https://doi.org/10.1007/s11769-017-0845-2

[17]   Cho, Y. (2016) A Watershed Water Quality Evaluation Model Using Data Mining as an Alternative to Physical Watershed Models. Water Science and Technology-Water Supply, 16, 703-714.
https://doi.org/10.2166/ws.2015.180

[18]   Zang, L., Li, Z. and Wang, J. (2014) Model of Water Quality Evaluation with Normalized Indices Values Based on Probalistic Neural Networks. Environment Engineering, 32, 118-122.

[19]   Ren, J., Yu, Z. and You, X. (2015) Model for Water Quality Evaluation Based on Wavelet Neural Network of Adaptive Genetic Algorithm. Environment Engineering, 33, 144-148.

[20]   Charulatha, G., Srinivasalu, S., Maheswari, O.U., Venugopal, T. and Giridharan, L. (2017) Evaluation of Ground Water Quality Contaminants Using Linear Regression and Artificial Neural Network Models. Arabian Journal of Geosciences, 10, 128.
https://doi.org/10.1007/s12517-017-2867-6

[21]   Abyaneh, H.Z. (2014) Evaluation of Multivariate Linear Regression and Artificial Neural Networks in Prediction of Water Quality Parameters. Journal of Environmental Health Science and Engineering, 12, 40.
https://doi.org/10.1186/2052-336X-12-40

[22]   Yu, X. and Zhang, X. (2017) Multiswarm Comprehensive Learning Particle Swarm Optimization for Solving Multiobjective Optimization Problems. PLoS ONE, 12, e0172033.
https://doi.org/10.1371/journal.pone.0172033

[23]   Zhao, X.L., Turk, M., Li, W., Lien, K.C. and Wang, G.Z. (2016) A Multilevel Image Thresholding Segmentation Algorithm Based on Two-Dimensional K-L Divergence and Modified Particle Swarm Optimization. Applied Soft Computing, 48, 151-159.
https://doi.org/10.1016/j.asoc.2016.07.016

[24]   Wang, L., Yang, B. and Orchard, J. (2016) Particle Swarm Optimization Using Dynamic Tournament Topology. Applied Soft Computing, 48, 584-596.
https://doi.org/10.1016/j.asoc.2016.07.041

[25]   Taghiyeh, S. and Xu, J. (2016) A New Particle Swarm Optimization Algorithm for Noisy Optimization Problems. Swarm Intelligence, 10, 161-192.
https://doi.org/10.1007/s11721-016-0125-2

[26]   Li, M.S., Huang, X.Y., Liu, H.S., Liu, B.X., Wu, Y., Xiong, A.H. and Dong, T.W. (2013) Prediction of Gas Solubility in Polymers by Back Propagation Artificial Neural Network Based on Self-Adaptive Particle Swarm Optimization Algorithm and Chaos Theory. Fluid Phase Equilibria, 356, 11-17.
https://doi.org/10.1016/j.fluid.2013.07.017

[27]   Li, M.S., Huang, X.Y., Liu, H.S., Liu, B.X., Wu, Y. and Ai, F.R. (2013) Solubility Prediction of Gases in Polymers Based on Chaotic Self-Adaptive Particle Swarm Optimization Artificial Neural Networks. Acta Chimica Sinica, 71, 1053-1058.
https://doi.org/10.6023/A13020193

[28]   Huang, M., Li, X., Liu, H., Liu, B., Wu, Y. and Wang, L. (2015) Solubility Prediction of Supercritical Carbon Dioxide in 10 Polymers Using Radial Basis Function Artificial Neural Network Based on Chaotic Self-Adaptive Particle Swarm Optimization and K-Harmonic Means. RSC Advances, 5, 45520-45527.
https://doi.org/10.1039/C5RA07129A

 
 
Top