Back
 GEP  Vol.5 No.6 , June 2017
Evaluation of the River-Shallow Aquifer Exchange Process Effect on Surface Water Quality Deterioration
Abstract: Recently, according to a survey carried out in Oued El Abid River by Oum Er-Rbia Hydraulic Basin Agency concerned about the surface water quality, the downstream course is undergoing continual degradation in its water quality comparable to the upstream. This study comes to localize the sources of pollution and explains the process of degradation, which affects the water quality in that area. For this purpose, an inspection of the place has been done during January 2017 to cover the entire zone limited by the affected part of river, followed by a survey, which interests to water quality and the ground-water depth. The inspection doesn’t show any direct liquid discharge into the river; meanwhile the water quality degradation is related to the underground sources through river-shallow-aquifer exchange process, when the obtained results from the survey showed that severe parameters are involved in the degradation of groundwater, as the geology and agricultural activities. Combining these results with flow direction in groundwater, it is clear that pollutants are transported to the river via the river-shallow aquifer exchange process, which affects its quality. Based on the finding results, this study will give the decision makers a simple view to a complex pollution processing.
Cite this paper: Karaoui, I. , Arioua, A. , El Amrani Idrissi, A. , Nouaim, W. , Elhamdouni, D. , Ouhamchich, K. , Hssaisoune, M. and Hnini, R. (2017) Evaluation of the River-Shallow Aquifer Exchange Process Effect on Surface Water Quality Deterioration. Journal of Geoscience and Environment Protection, 5, 123-134. doi: 10.4236/gep.2017.56013.
References

[1]   Boyd, C.E. (2015) Water Quality: An Introduction. Springer, Berlin.
https://doi.org/10.1007/978-3-319-17446-4

[2]   LeRoy, P. (1995) Troubled Waters: Population and Water Scarcity. Colorado Journal of International Environmental Law and Policy, 6, 299.

[3]   United Nations, Department of Economic and Social, Population Division (2015) World Population Prospects. The 2015 Revision, Key Findings and Advance Tables. New York.

[4]   Cosgrove, W.J., Rijsberman, F.R. (2014) World Water Vision: Making Water Everybody’s Business. Routledge, Abingdon-on-Thames.

[5]   Carpenter, S.R., Caraco, N.F., Correll, D.L., Howarth, R.W., Sharpley, A.N. and Smith, V.H. (1998) Nonpoint Pollution of Surface Waters with Phosphorus and Nitrogen. Ecological Applications, 8, 559-568.
https://doi.org/10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2

[6]   Chang, H. (2005) Spatial and Temporal Variations of Water Quality in the Han River and Its Tributaries, Seoul, Korea, 1993-2002. Water, Air, and Soil Pollution, 161, 267-284.
https://doi.org/10.1007/s11270-005-4286-7

[7]   Claessens, L., Hopkinson, C., Rastetter, E. and Vallino, J. (2006) Effect of Historical Changes in Land Use and Climate on the Water Budget of an Urbanizing Watershed. Water Resources Research, 42, W03426.
https://doi.org/10.1029/2005wr004131

[8]   Oke, T.R. (2002) Boundary Layer Climates. Routledge, Abingdon-on-Thames.

[9]   Nelson, K.C. and Palmer, M.A. (2007) Stream Temperature Surges under Urbanization and Climate Change: Data, Models, and Responses1. Wiley Online Library, Hoboken, NJ.

[10]   Baker, A. (2003) Land Use and Water Quality. Encyclopedia of Hydrological Sciences, 16, 188.

[11]   Meybeck, M. (2002) Riverine Quality at the Anthropocene: Propositions for Global Space and Time Analysis, Illustrated by the Seine River. Aquatic Sciences, 64, 376-393.
https://doi.org/10.1007/PL00012593

[12]   Simeonov, V., Stratis, J.A., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., Sofoniou, M. and Kouimtzis, T. (2003) Assessment of the Surface Water Quality in Northern Greece. Water Research, 37, 4119-4124.
https://doi.org/10.1016/S0043-1354(03)00398-1

[13]   Hanrahan, G., Gledhill, M., House, W.A. and Worsfold, P.J. (2003) Evaluation of Phosphorus Concentrations in Relation to Annual and Seasonal Physico-Chemical Water Quality Parameters in a UK Chalk Stream. Water Research, 37, 3579-3589.
https://doi.org/10.1016/S0043-1354(03)00265-3

[14]   Bu, H., Tan, X., Li, S. and Zhang, Q. (2010) Temporal and Spatial Variations of Water Quality in the Jinshui River of the South Qinling Mts., China. Ecotoxicology and Environmental Safety, 73, 907-913.

[15]   Crosa, G., Froebrich, J., Nikolayenko, V., Stefani, F., Galli, P. and Calamari, D. (2006) Spatial and Seasonal Variations in the Water Quality of the Amu Darya River (Central Asia). Water Research, 40, 2237-2245.
https://doi.org/10.1016/j.watres.2006.04.004

[16]   Dawe, P. (2006) A Statistical Evaluation of Water Quality Trends in Selected Water Bodies of Newfoundland and Labrador. Journal of Environmental Engineering and Science, 5, 59-73.
https://doi.org/10.1139/s05-019

[17]   Kannel, P.R., Lee, S., Kanel, S.R., Khan, S.P. and Lee, Y.-S. (2007) Spatial-Temporal Variation and Comparative Assessment of Water Qualities of Urban River System: A Case Study of the River Bagmati (Nepal). Environmental Monitoring and Assessment, 129, 433-459.
https://doi.org/10.1007/s10661-006-9375-6

[18]   Stubblefield, A.P., Reuter, J.E., Dahlgren, R.A. and Goldman, C.R. (2007) Use of Turbidometry to Characterize Suspended Sediment and Phosphorus Fluxes in the Lake Tahoe Basin, California, USA. Hydrological Processes, 21, 281-291.
https://doi.org/10.1002/hyp.6234

[19]   Astel, A., Tsakovski, S., Barbieri, P. and Simeonov, V. (2007) Comparison of Self-Organizing Maps Classification Approach with Cluster and Principal Components Analysis for Large Environmental Data Sets. Water Research, 41, 4566-4578.
https://doi.org/10.1016/j.watres.2007.06.030

[20]   Winter, T.C. (1998) Ground Water and Surface Water: A Single Resource. DIANE Publishing Inc.

[21]   Bencala, K.E. (2000) Hyporheic Zone Hydrological Processes. Hydrological Processes, 14, 2797-2798.
https://doi.org/10.1002/1099-1085(20001030)14:15<2797::AID-HYP402>3.0.CO;2-6

[22]   Konrad, C.P. (2006) Location and Timing of River-Aquifer Exchanges in Six Tributaries to the Columbia River in the Pacific Northwest of the United States. Journal of Hydrology, 329, 444-470.
https://doi.org/10.1016/j.jhydrol.2006.02.028

[23]   Constantz, J. and Stonestrom, D.A. (2003) Heat as a Tracer of Water Movement near Streams. U.S. Geological Survey Circular, No. 1260, 1-96.

[24]   Wang, Y. and Jiao, J.J. (2012) Origin of Groundwater Salinity and Hydrogeo-chemical Processes in the Confined Quaternary Aquifer of the Pearl River Delta, China. Journal of Hydrology, 438-439, 112-124.
https://doi.org/10.1016/j.jhydrol.2012.03.008

[25]   Laaroussi, M. (2005) Maîtrise de l’irrigation pour une gestion durable du périmètre irrigué de Tadla (Control of Irrigation for Sustainable Management of the Irrigated Perimeter of Tadla). 19th Congress and 56th International Executive Council Meeting, 10-18.

[26]   Etienne, D., Guessab, H. and Coll, C. (1975) Ressources en eau du Marne. Tome 2, Plaines et bassins du Maroc Atlantique (Water Resources of the Marne. Volume 2, Plains and Basins of Morocco). Notes Mém Serv Géol Maroc, 299-364.

[27]   Ministère de l’Eau et de l’Environnement (2002) Moroccan Standards for Surface Water Quality. Official Bulletin No. 5062.

[28]   Destombes, J. (1952) Gypse, sel et autres substances des dépôts d’évaporation (Gypsum, Salt and Other Substances from Evaporation Deposits). XIX Congrès Géol Int Monogr Région 3e Sér Maroc, No. 1, 359-370.

[29]   El Hammoumi, N., Sinan, M., Lekhlif, B. and El Mahjoub, L. (2012) évaluation de la qualité des eaux souterraines pour l’utilisation dans l’eau potable et l’agriculture: Plaine de Tadla, Maroc (Assessment of Groundwater Quality for Use in Drinking Water and Agriculture: Tadla Plain, Morocco). Afrique Science: Revue Internationale des Sciences et Technologie, 8.

[30]   Ettazarini, S. (2006) Mapping of Groundwater Quality in the Turonian Aquifer of Oum Er-Rabia Basin, Morocco: A Case Study. Environmental Geology, 50, 919-929.
https://doi.org/10.1007/s00254-006-0263-8

[31]   Testud, F. (2004) Engrais minéraux. EMC—Toxicologie-Pathologie, 1, 21-28.

[32]   Vandenberghe, C., De Toffoli, M., Lambert, R. and Colinet, G. (2016) L’épandage d’engrais de ferme avant le semis d’une culture intermédiaire (CIPAN) présente-t-il un risque important de lixiviation de nitrate? (Does the Application of Farm Fertilizers Prior to Sowing of an Intermediate Crop (ICNAF) Pose a Significant Risk of Nitrate Leaching?). Biotechnologie Agronomie Societe et Environnement, 20, 143.

[33]   Zitouni, M. and Ibouh, H. (2016) Apport de la télédétection dans l’évaluation de la variation des surfaces d’eau, du sol et du couvert végétal dans la Plaine du Tadla entre 1984 et 2015 (Remote Sensing Contribution in the Assessment of the Water Variation, Soil and Vegetation Cover in the Tadla Plain between 1984 and 2015). Morocco.

[34]   Hess, C., Missante, G. and Schoen, U. (1964) étude minéralogique des argiles de quelques roches-mères et sols des Beni Moussa—Tadla (Mineralogical study of the clays and soil of Beni Moussa—Tadla). Al Awamia, 10, 115-139.

[35]   Hsissou, P.C.Y. and Mania, J. (1996) L’aquifère des calcaires du Turonien (Bassin du Tadla, Maroc). Alimentations locales et lointaines à partir de l’Atlas The aquifer of Turonian limestones (Tadla Basin, Morocco) (The Turonian Limestone Aquifer. Local and Distant Recharge from the The Aquifer of Turonian Limestones in Atlas). Local and Remote Groundwater Recharge from the Atlas, 433-443.

[36]   Borrego, A.F. and Romero, P. (1982) Study of the Microbiological Pollution of a Malaga Littoral Area II. Relatsh. Fecal Coliforms Fecal Streptococci VIème Journ. Pollut. Cannes Fr, 561-569.

[37]   Geldreich, E.E. and Litsky, W. (1976) Fecal Coliform and Fecal Streptococcus Density Relationships in Waste Discharges and Receiving Waters. Critical Reviews in Environmental Science and Technology, 6, 349-369.

[38]   CAÏDAT BZOU (2009) Diagnostic Territorial Participatif de la commune rurale de BZOU.

 
 
Top