JBiSE  Vol.4 No.9 , September 2011
Mathematical model for steady state current at ppo-modified micro-cylinder biosensors
A Mathemataical model for a modified micro- cylinder electrode in which polyphenol oxidase ( PPO) occurs for all values of the concentration of catechol and o-quinone is analysed. This model is based on system of reaction-diffusion Equations containing a non-linear term related to Michaelis Menten kinetics of the enzymatic reaction. Here a new analytical technique Homotopy Perturbation Method is used to solve the system of non-linear differential Equations that describe the diffusion coupled with a Michaelis-Menten kinetics law. Here we report an analytical expressions pretaining to the concentration of catechol and o-quinone and corresponding current in terms of dimensionless reaction-diffusion parameters in closed form. An excellent agreement with available limiting case is noticed.

Cite this paper
nullVenugopal, K. , Eswari, A. and Rajendran, L. (2011) Mathematical model for steady state current at ppo-modified micro-cylinder biosensors. Journal of Biomedical Science and Engineering, 4, 631-641. doi: 10.4236/jbise.2011.49079.
[1]   Revzin, A.F., Sirkar, K., Simonian, A. and Pishko, M.V. (2002) Glucose, Lactate and Pyruvate Biosensor Arrays Based on Redox Polymer/Oxidoreductase Nanocomposite Thin Films Deposited on Photolithographically Patterned Gold Electrodes. Sensor and Actuators B, 81, 359. doi:org/10.1016/S0925-4005(01)00982-0

[2]   Shi, G., Liu, M., Zhu, M., Zhou, T., Chen, J., Jin, L. and Jin, J.-Y. (2002) The study of nafion/xanthine oxidase/au colloid chemically modified biosensor and its application in the determination of hypoxanthine in myocardial cells in vivo. Analyst, 127, 396. doi:org/10.1039/b108462n

[3]   Gue, A.-M., Tap, H., Gros, P. and Maury, F. (2002) A miniaturized silicon based enzymatic biosensor: towards a generic structure and technology for multi-analytes assays. Sensor and Actuators B, 82, 227. doi:org/10.1016/S0925-4005(01)01009-7

[4]   Edmonds, T.E. (1985) Electroanalytical application of carbon fiber electrodes, Analytica Chimica Acta, 175, 1. doi:org/10.1016/S0003-2670(00)82713-0

[5]   Gonon, F., Suaud-Changny, M.F. and Buda, M. (1992) Proceedings of satellite symposium on neu-roscience and technology, Lyon, 215.

[6]   Donnet, J.B. and Basal, R.C. (1984) International Fiber Science and Technology, Carbon Fibers, Dekker, New York, 3.

[7]   Decher, G. and Hong, J.D. (1991) Buildup of ultrathin multilayer films by a self-assembly process: II. Consecutive adsorption of anionic and cationic bipolar amphiphiles and polyelectrolytes on charged surfaces. Berichte der Bunsengesellschaft Für Physikalische Chemie, 95, 1430.

[8]   Hodak, J., Etchenique, R., Calvo, E.J., Singhal, K. and Bartlett, P.N. (1997) Layer by layer self assembly of glucose oxidase with a poly(allylmanine)-ferrocene redox mediator. Langmuir, 13, 2708. doi:org/10.1021/la962014h

[9]   Forzani, E.S., Solis, V.M. and Calvo, E.S. (2000) Electrochemical behavior of polyphenol oxidase immobilized in self-assembled structures layer by layer with cationic polyallylamine. Analytical Chemistry, 72, 5300. doi:org/10.1021/ac0003798

[10]   Coche-Guerante, L., Labbe, P. and Mengeand, V. (2001) Analytical Chemistry, 73, 3206. doi:org/10.1021/ac001534l

[11]   Lvov, Y. and Caruso, F. (2001) Biocolloids with Ordered Urease Multilayer Shells as Enzymatic Reactors. Analytical Chemistry, 73, 4212. doi:org/10.1021/ac010118d

[12]   Fang, M., Grant, P.S., McShane, M.J., Sukhorukov, G. B., Golub, V.O. and Lvov, Y. (2002) Magnetic bio/nanoreactor with multilayer shells of glucose oxidase and inorganic nanoparticles. Langmuir, 18, 6338. doi:org/10.1021/la025731m

[13]   Caruso, F. and Schuler, C. (2000) Enzyme multilayers on colloid particles: Assembly, stability, and enzymatic activity. Langmuir, 16, 9595. doi:org/10.1021/la000942h

[14]   Caruso, F., Fiedler, H. and Haage, K. (2000) Assembly of β-glucosidase multilayers on spherical colloidal particles and their use as active catalyst. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 169, 287. doi:org/10.1016/S0927-7757(00)00443-X

[15]   Sun, H. and Hu, N. (2004) 1. Voltammetric studies of hemoglobin-coated polystyrene latex bead films on pyrolytic graphite electrodes. Biophysical Chemistry, 110, 297. sdoi:org/10.1016/j.bpc.2004.03.005

[16]   Rijiravanich, P., Aoki, K. and Chen, J., Surareungchai, W., Somasundrum, M. (2006) Micro-cylinder biosensors for phenol and catechol based on layer-by-layer immobilization of tyrosinase on latex particles: Theory and experiment. Journal of Electroanalytical Chemistry, 589, 249-258. doi:org/10.1016/j.jelechem.2006.02.019

[17]   Wilcox, D.E., Porras, A.G., Hwang, Y.T., Lerch, K., Winkler, M.E. and Solomon, E.I. (1985) Substrate Analogue Binding to the Coupled Binuclear Copper Active Site in Tyrosinase. Journal of American Chemical Society, 107, 4015. doi:org/10.1021/ja00299a043

[18]   Carbanes, J., Garcia-Canovas, F., Lozano, J.A. and Garcia-Carmona. F (1987) A kinetic study of the melanization pathway between L-tyrosine and dopachrome. Biochimica et Biophysica Acta- General Subjects, 923, 187.

[19]   Coely, A., et al. (2001) Backlund and Darboux Transformation. American Mathematical Society, Providence, RI.

[20]   Wadati, M., Sanuki, H. and Konno, K. (1975) Relationships among Inverse Method, B?cklund Transformation and an Infinite Number of Conservation Laws. Progress of Theoretical Physics, 53, 419. doi:org/10.1143/PTP.53.419

[21]   Gardener, C.S., Green, J.M., Kruskal, M.D. and Miura, R.M. (1967) Method for solving the Korteweg–de Vries Equation. Physical Review Letter, 19, 1095. doi:org/10.1103/PhysRevLett.19.1095

[22]   Hirota, R. (1971) Exact solutions to the Equation describing cylindrical solitons. Physical Review Letter, 27, 1192. doi:org/10.1103/PhysRevLett.27.1192

[23]   Malfliet, W. (1992) Solitary wave solutions of nonlinear wave Equations. American Journal of Physics, 60, 650. doi:org/10.1119/1.17120

[24]   He, J.H. (1998) Approximate analytical solution for seepage flow with fractional derivatives in porous media. Computer Methods in Applied Mechanics and Engineering, 167, 57. doi:org/10.1016/S0045-7825(98)00108-X

[25]   He, J.H. (2005) Approximate solution of nonlinear differential Equations with convolution product nonlinearities. Computer Methods in Applied Mechanics and Engineering, 26, 695-700.

[26]   He, J.H. (2006) Homotopy perturbation method for solving boundary value problems. Physical Letter A, 350, 87-88. doi:org/10.1016/j.physleta.2005.10.005

[27]   Ariel, P.D. (2010) Homotopy perturbation method and the natural convection flow of a third grade fluid through a circular tube. Nonlinear Science Letters A, 1, 43-52.

[28]   Ganji, D.D. and Rafei, M. (2006) Solitary wave solutions for a generalized Hirota-Satsuma coupled KdV Equation by homotopy perturbation Method. Physical Letter A, 356, 131-137. doi:org/10.1016/j.physleta.2006.03.039

[29]   Meena, A. and Rajendran, L. (2010) Mathematical modeling of amperometric and potentiometric biosensors and system of non-linear Equations-Homotopy perturbation approach. Journal of Electroanalytical Chemistry, 644, 50-59. doi:org/10.1016/j.jelechem.2010.03.027

[30]   Anitha, S., Subbiah, A., Rajendran, L. and Ashok K.J. (2010) Solutions of the coupled reaction and diffusion equations within polymer-modified ultramicroelectrodes. Physical Chemistry C, 114, 7030-7037.

[31]   Manimozhi, P., Subbiah, A. and Rajendran, L. (2010) Solution of steady-state substrate concentration in the action of biosensor response at mixed enzyme kinetics. Sensor and Actuators B, 147, 290-297. doi:org/10.1016/j.snb.2010.03.008

[32]   Eswari, A. and Rajendran, L. (2010) Analytical solution of steady state current at a microdisk biosensor. Journal of Electroanalytical Chemistry, 641, 35-44. doi:org/10.1016/j.jelechem.2010.01.015

[33]   Eswari, A. and Rajendran, L. (2010) Analytical solution of steady-state current an enzyme-modified microcylinder electrodes. Journal of Electroanalytical Chemistry, 648, 36-46. doi:org/10.1016/j.jelechem.2010.07.002