ENG  Vol.9 No.5 , May 2017
Numerical Investigation of Turbulent Flow through Rectangular and Biconvex Shaped Trash Racks
Abstract: Turbulent flow through a trash rack of bars of rectangular and biconvex shapes is considered. A trash rack is composed of an array of bars fitted into a hydro-electric power station to prevent debris and fish to enter the waterway towards the turbine. The work is directed towards modeling a large number of bars for which the flow turn out to have a periodic structure. It is here shown that this case can be simplified with the flow past a single bar together with periodic boundary conditions. Using this approach the head loss is derived for different angles of attack α and blockages P for two shapes of the rack, a rectangular bar and an aerodynamically shaped biconvex bar. It is found that overall loss of the biconvex bars is in general about 15% of the loss for the rectangular case for small angles of attack. For large angle of attack this difference diminishes. Of interest for the biconvex bars is also a local minimum in the head loss for angles approximately greater than 20° and for a blockage P around 0.35. This combination of parameters gives a low loss together with an efficient barrier for debris and fishes.
Cite this paper: Åkerstedt, H. , Eller, S. and Lundström, T. (2017) Numerical Investigation of Turbulent Flow through Rectangular and Biconvex Shaped Trash Racks. Engineering, 9, 412-426. doi: 10.4236/eng.2017.95024.

[1]   Marjavaara, B.D. and Lundström, T.S. (2006) Redesign of a Sharp Heel Draft Tube by a Validated CFD-Optimization International Journal for Numerical Methods in Fluids, 50, 911-924.

[2]   Marjavaara, B.D., Lundström, T.S., Goel, T., Mack, Y. and Shyy, W. (2007) Hydraulic Diffuser Shape Optimisation by Multiple Surrogate Model Approximations of Pareto Fronts. Journal of Fluids Engineering, 129, 1228-1240.

[3]   Andersson, A.G., Andreasson, P. and Lundström, T.S. (2013) CFD-Modelling and Validation of Free Surface Flow during Spilling of a Reservoir in a Down-Scale Model. Engineering Applications of Computational Fluid Mechanics, 7, 159-167.

[4]   Andersson, A.G., Hellström, J.G.I., Andreasson, P. and Lundström, T.S. (2014) Effect of Spatial Resolution of a Rough Surface on a Numerically Computed Flow Field with Application to Hydraulic Engineering. Engineering Applications of Computational Fluid Mechanics, 8, 373-381.

[5]   Laine, A., Ylinäaräa, T., Heikkiläa, J. and Hooli, J. (1998) Behaviour of Upstream Migrating Whitefish, Coregonus lavaretus in the Kukkolankoski Rapids, Northern Finland. In: Jungwirth, M., Schmutz, S. and Weiss, S., Eds., Fish Migration and Fish Bypasses, Fishing News Books, Oxford, 33-44.

[6]   Laine, A., Kamula, R. and Hooli, J. (1998) Fish and Lamprey Passage in a Combined Denil and Vertical Slot Fishway. Fisheries Management and Ecology, 5, 31-44.

[7]   Lundström, T.S., Hellström, J.G.I. and Lindmark, E.M, (2010) Flow Design of Guiding Device for Downstream Fish Migration. River Research and Applications, 26, 166-182.

[8]   Lundström, T.S., Brynjell-Rahkola, M., Ljung, A.-L., Hellström, J.G.I. and Green, T.M. (2015) Evaluation of Guiding Device for Downstream Fish Migration with In-Field Particle Tracking Velocimetry and CFD. Journal of Applied Fluid Mechanics, 8, 579-589.

[9]   Green, T., Lindmark, E.M, Lundström, T.S. and Gustavsson, L.H. (2011) Flow Characterization of an Attraction Channel as Entrance to Fishways. River Research and Application, 27, 1290–1297.

[10]   Andersson, A., Lindberg, D.-E., Lindmark, E.M., Leonardsson, K., Andreasson, P., Lundqvist, H. and Lundstrom, T.S. (2012) A Study of the Location of the Entrance of a Fishway in a Regulated River with CFD and ADCP. Modelling and Simulation in Engineering, 2012, Article ID: 327929.

[11]   Calles, O., Karlsson, S., Vezza, P., Comoglio, C. and Tielman, J. (2013) Success of a Low-Sloping Rack for Improving Downstream Passage of Silver Eels at a Hydroelectric Plant. Freshwater Biology, 58, 2168-2179.

[12]   Schilt, C.R. (2007) Developing Fish Passage and Protection at Hydropower Dams. Applied Animal Behaviour Science, 104, 295-325.

[13]   Whitney, R.R., Calvin, L.D., Erho, M.W. and Coutant, C.C., (1997) Downstream Passage for Salmon at Hydroelectric Projects in the Columbia River Basin: Development, Installation, and Evaluation. Northwest Power Planning Council, Portland, Document No: 97-15.

[14]   Bengoechea, R.A., Larraonaa, G.S., Ramosa, J.C. and Rivas, A. (1997) Influence of Geometrical Parameters in the Downstream Flow of a Screen under Fan-Induced Swirl Condition. Engineering Applications of Computational Fluid Mechanics, 8, 623-638.

[15]   Tsitaka, J.M., Tachie, M.F., Katopodis, C., Teklemariam, E., Ghamry, H., Sydor, K. and Shumilak, B. (2007) A Particle Image Velocimetry Study Turbulent Through Model Trash Rack. Proceedings of the 18th Hydrotechnical Conference, Winnipeg, 22-24 August 2007, 1-10.

[16]   Tsitaka, J.M., Katopodis, C. and Tachie, M.F. (2009a) Experimental Study of Turbulent Flow Near Model Trash Racks. Journal of Hydraulic Research, 47, 275-280.

[17]   Tsitaka, J.M., Tachie, M.F. and Katopodis, C. (2009b) Particle Image Velocimetry Study of Flow near Trash Rack Models. Journal of Hydraulic Engineering, 135, 671-684.

[18]   Herman, F., Billeter, P. and Hollenstein, R. (1998) Investigations on the Flow through a Trash Rack under Different Inflow Conditions. Hydroinformatics, Balkema, Rotterdam, 121-128.

[19]   Mueusberger, H., Volkart, P. and Minor, H.-E. (2001) A New Improved Formula for Calculating Trashrack Losses. Proceedings of the 29th IAHR Congress, 4, 804-809.

[20]   Ghamry, H. and Katopodis, C. (2012) Numerical Investigation of Turbulent Flow through Bar Racks in Closed Conduits. Proceedings of the 9th International Symposium on Ecohydraulics, Vienna, 17-21 September 2012.

[21]   Raynal, S., Chatellier, L., David, L., Courret, D. and Larinier, M. (2013) Numerical Simulations of Fish-Friendly Angled Trashracks at Model and Real Scale. 35th IAHR World Congress, Chengdu, 8-13 September 2013.

[22]   Idelchik, I.E. (2008) Handbook of Hydraulic Resistance. Begell House, Danbury.

[23]   Menter, F.R. (1994) Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal, 32, 269-289.

[24]   Pope, S.B. (2009) Turbulent Flows. Cambridge University Press, Cambridge.