[1] Healy, K.E. and Ducheyne, P. (1992) The mechanisms of passive dissolution of titanium in a model physiological environment. Journal of Biomedical Materials Research, 26, 319-338. doi:10.1002/jbm.820260305
[2] Nanci, A., Wuest, J.D., Peru, L., Brunet, P., Sharma, V., Zalzal S. and McKee, M.D. (1998) Chemical modification of titanium surfaces for covalent attachment of biological molecules. Journal of Biomedical Materials Research, 40, 324-335. doi:10.1002/(SICI)1097-4636(199805)40:2<324::AID-JBM18>3.0.CO;2-L
[3] Albrektsson, T. and Hansson, H.A. (1986) An ultrastructural characterization of the interface between bone and sputtered titanium or stainless steel surfaces. Biomaterials, 7, 201-205. doi:10.1016/0142-9612(86)90103-1
[4] Damien C.J. and Persons, J.R. 1992, Bone graft and bone graft substitutes: a review of current technology and applications. Journal of Applied Biomaterials, 2, 187- 208. doi:10.1002/jab.770020307
[5] Hench, L.L. (1999) Bioactive Glasses and Glass- Ceramics. Materials Science Forum, 293, 37-64. doi:10.4028/www.scientific.net/MSF.293.37
[6] McGrory, B.J., Morrey, B.F., Cahalan, T.D. and Cabanela M.E. (1995) Effect of femoral offset on range of motion and abductor muscle strength after total hip arthroplasty. Journal of Bone and Joint Surgery, 77, 865-869.
[7] Elliott, J.C., Mackie P.E. and Young, R.A. (1973) Monoclinic Hydroxyapatite. Science, 108, 1055-1057. doi:10.1126/science.180.4090.1055
[8] Hong, L., Xu H.C. and De Groot, K. (1992) Tensile strength of the interface between hydroxyapatite and bone. Journal of Biomedical Materials Research, 26, 7-18. doi:10.1002/jbm.820260103
[9] Edwards, J.T., Brunski, J.B. and Higuchi, H.W. (1997) Mechanical and morphologic investigation of the tensile strength of a bone hydroxyapatite interface. Journal of Biomedical Materials Research, 36, 454-468. doi:10.1002/(SICI)1097-4636(19970915)36:4<454::AID-JBM3>3.0.CO;2-D
[10] Gautier, S., Champion, E., Bernache-Assollant D. and Chartier T., (1999) Rheological characteristics of aluminia platelet-hydroxyapatite composite suspension. Journal of the European Ceramic Society, 19, 469-477. doi:10.1016/S0955-2219(98)00224-6
[11] Kong, Y., Kim, S., Kim H. and Lee, I. (1999) Reinforcement of hydroxyapatite bioceramics by addition of ZrO2 coated Al2O3. Journal of the European Ceramic Society, 82, 2963-2968. doi:10.1111/j.1151-2916.1999.tb02189.x
[12] Li, J., Hermansson L. and Soremark, R. (1993) High strength biofunctional zirconia: mechanical properties and static fatigue behaviour of zirconia–apatite composite. Journal of Materials Science: Materials in Medicine, 4, 50-54. doi:10.1007/BF00122977
[13] T. Kokubo, T. Matsushita and H. Takadama (2007) Titania-Based Bioactive Materials. Journal of the European Ceramic Society, 27, 1553-1558. doi:10.1016/j.jeurceramsoc.2006.04.015
[14] Vehof, J.W.M., Spauwen P.H.M. and Jansen, J.A. (2000) Bone formation in calcium-phosphate-coated titanium mesh. Biomaterials, 21, 2003-2009. doi:10.1016/S0142-9612(00)00094-6
[15] Miyazaki, T., Kim, H.M., Miyaji, F., Kokubo, T., Nakamura, T. (1997) Bioceramics 10. Elsevier Science LTD, New York.
[16] Kim, H.M., Miyaji, F., Kokubo, T., Nakamura, T. (1997) Apatite-forming ability of alkali-treated ti metal in body environment. Journal of the ceramic Society of Japan, 105, 111-116. doi:10.2109/jcersj.105.111
[17] Cortes, D.A., Escobedo, J.C., Nogiwa A. and Munoz, A. (2003) Biomimetic bonelike apatite coating on cobalt based alloys. Materials Science Forum, 442, 61-66. doi:10.4028/www.scientific.net/MSF.442.61
[18] Aboudi J., Pindera, M.-J. and Arnold, S.M. (2001) Linear thermoelastic higher-order theory for periodic multiphase materials,. Journal of Applied Mechanics, 68, 697-707. doi:10.1115/1.1381005
[19] De Groot, K., Geesink, R., Klein C. and Serekian, P. (1987) Plasma sprayed coatings of Hydroxyapatite. Journal of Biomedical Materials Research, 21, 1375- 1381. doi:10.1002/jbm.820211203
[20] Yang, Y.C. (2007) “Influence of residual stress on bonding strength of the plasma-sprayed hydroxyapatite coating after the vacuum heat treatment,” Surface and Coatings Technology, 201, 7187-7193. doi:10.1016/j.surfcoat.2007.01.027
[21] Chen C.C. and Ding, S.J. (2006) Effect of heat treatment on characteristics of plasma sprayed hydroxyapatite coatings. Materials Transactions, 47, 935-940. doi:10.2320/matertrans.47.935
[22] Yang, X.D., Lu, X., Zhang, Q.Y., Zhang, X.D., et al. (2007) BCP coatings on pure titanium plates by CD method. Materials Science and Engineering C, 27, 781- 786. doi:10.1016/j.msec.2006.08.011
[23] Ducheyne P.and Hasting, G.W. (1984) Metal and Ceramic Biomaterials. CRC Press, Boca Raton, 144-166.
[24] Byong-Taek, L., Min-Ho, Y., RajatKanti, P., Kap-Ho, L. and Ho-Yeon, S. (2007) In situ synthesis of spherical BCP nanopowders by microwave assisted process. Materials Chemistry and Physics, 104, 249-253. doi:10.1016/j.matchemphys.2007.02.009
[25] Cao, L., Zhang, C. and Huang, J. (2005) Synthesis of hydroxyapatite nanoparticles in ultrasonic precipitation. Ceramics International, 31, 1041-1044. doi:10.1016/j.ceramint.2004.11.002
[26] Choi, M. G. et al. (2005) Effects of titanium particle size on osteoblast functions in vitro and in vivo. PNAS, 102, 4578-4583. doi:10.1073/pnas.0500693102
[27] Ning C.Q. and Zhou, Y. (2004) On the microstructure of biocomposites sintered from Ti, HA and bioactive glass. Biomaterials, 25, 3379-3387. doi:10.1016/j.biomaterials.2003.10.017
[28] Reilly D.T. and Burstein, A. H. (1975) The elastic and ultimate properties of compact bone tissue. Journal of Biomechanics, 8, 393-396. doi:10.1016/0021-9290(75)90075-5
[29] Schmidt, C., Ignatius A.A. and Claes, L.E. (2001) Proliferation and differentiation parameters of humanosteoblasts on titanium and steel surfaces. Journal of Biomedical Materials Research, 54, 209-215. doi:10.1002/1097-4636(200102)54:2<209::AID-JBM7>3.0.CO;2-7