AMPC  Vol.1 No.2 , September 2011
Synthesis, Crystal Growth and Characterization of Organic NLO Material: M-Nitroacetanilide
Abstract: Single crystals of m-Nitroacetanilide (mNAa) were successfully grown by slow evaporation method at a constant temperature 40°C from methanol solution. The solubility studies for mNAa were estimated. The cell dimensions were obtained by single crystal X-ray diffraction (XRD) study. The functional groups have been confirmed using Fourier transform infrared (FTIR) analysis. The placement of protons was identified from Nuclear Magnetic Resonance Spectroscopy (NMR) spectral analysis. UV-visible and fluorescence spectral analyses were carried out for the grown crystals. Thermo gravimetric analysis and differential thermal analysis were carried out to determine the thermal properties of the as grown crystal. The Second Harmonic Generation (SHG) efficiency of mNAa was also determined.
Cite this paper: nullR. Rajendran, T. Freeda, U. Kalasekar and R. Peruma, "Synthesis, Crystal Growth and Characterization of Organic NLO Material: M-Nitroacetanilide," Advances in Materials Physics and Chemistry, Vol. 1 No. 2, 2011, pp. 39-43. doi: 10.4236/ampc.2011.12007.

[1]   M. Narayan Bhat and S. M. Dharmaprakash, J. Cryst Growth, Vol. 236, 2002, pp. 376-380. doi:10.1016/S0022-0248(01)02094-2

[2]   T. Suthan and N. P. Rajesh, J. Cryst. Growth, Vol. 312, 2010, pp. 3156-3160. doi:10.1016/j.jcrysgro.2010.08.002

[3]   Huaihong Zhang, Yu Sun, Xiaodan Chen, Xin Yan and Baiwang Sun, J. Cryst. Growth, Vol. 324, 2011, pp. 196-200. doi:10.1016/j.jcrysgro.2011.03.044

[4]   Natalia Zaitseva, Leslie Carman, Andrew Glenn, Jason Newby, Michelle Faust, Sebastien Hamel, Nerine Cherepy and Stephen Payne, J. Cryst. Growth, Vol. 314, 2011, pp. 163-170. doi:10.1016/j.jcrysgro.2010.10.139

[5]   D. S. Chemla and J. Zyss, “NonlinearOptical Properties of Organic Molecule and Crystals,” Academic press, New York, 1987.

[6]   N. Bloembergen and J. Nonlinear, Opt. Phys. Mater, Vol. 15, 1996, pp. 1-8. doi:10.1142/S0218863596000027

[7]   S. G. Prabhu and P. Mohan Rao, J. Cryst Growth, Vol. 210, 2000, pp. 824-827. doi:10.1016/S0022-0248(99)00843-X

[8]   N. Vijayan, R. Ramesh Babu, R. Gopalakrishnan and P. Ramasamy, J. Cryst. Growth, Vol. 267, 2004, pp. 646-653. doi:10.1016/j.jcrysgro.2004.04.008

[9]   D. Sajan, I. Hubert Joe and V. S. Jayakumar, J. Physics: Conference Series, Vol. 28, 2006, pp. 123-126.

[10]   L. Mahalakshmi, V. Upadhyaya and T. N. Guru Row, Acta Cryst, Vol. E58, 2002, pp. 983-984.

[11]   J. R. Dyer, “Applications of Absorption Spectroscopy of Organic Compounds,” Prentice-Hall of India, New Delhi, 1994.

[12]   R. M. Silverstein, G. Clayton Bassler and T. C. Morrill, “Spectroscopic Identification of Organic Compounds,” 4th edition, John Wiley & Sons, New York, 1981.

[13]   Hobart H. Willard, Lynne L. Merritt jr., John A. Dean and Frank A. Settle jr., “Instrumental Methods of Analysis, Sixth Edition,” Wadsworth Publishing Company, Florence, 1986, p. 609.

[14]   N. J. Turro, “Molecular Photochemistry,” Benjamin, New York, 1965.

[15]   K. Biemann, “Tables of Spectral Data for Structure De-termination of Organic Compounds,” Springer-Verlag, Berlin Heidelberg, 1989.

[16]   S. K. Kurtz and T. T. Perry, J. Appl. Phys., Vol. 39, 1968, pp. 3798-3813. doi:10.1063/1.1656857

[17]   H. -X. Cang, W. -D. Huang and Y. -H. Zhou, J. Cryst. Growth, Vol. 192, 1998, pp. 236-242. doi:10.1016/S0022-0248(98)00408-4