Back
 CN  Vol.9 No.2 , May 2017
A Novel Neighbor-Preferential Growth Scale-Free Network Model and its Properties
Abstract:
In this paper, we propose a novel neighbor-preferential growth (NPG) network model. Theoretical analysis and numerical simulations indicate the new model can reproduce not only a scale-free degree distribution and its power exponent is related to the edge-adding number m, but also a small-world effect which has large clustering coefficient and small average path length. Interestingly, the clustering coefficient of the model is close to that of globally coupled network, and the average path length is close to that of star coupled network. Meanwhile, the synchronizability of the NPG model is much stronger than that of BA scale-free network, even stronger than that of synchronization-optimal growth network.
Cite this paper: Long, Y. and Jia, Z. (2017) A Novel Neighbor-Preferential Growth Scale-Free Network Model and its Properties. Communications and Network, 9, 111-123. doi: 10.4236/cn.2017.92007.
References

[1]   Watts, D.J. and Strogatz, S.H. (1998) Collective Dynamics of "Small-World" Networks. Nature, 393, 440-442.
https://doi.org/10.1038/30918

[2]   Barabási, A.L. and Albert, R. (1999) Emergence of Scaling in Random Networks. Science, 286, 509-512.
https://doi.org/10.1126/science.286.5439.509

[3]   Yin, R.R., Liu, B., Liu, H.R. and Li, Y.Q. (2016). Research on Invulnerability of the Random Scale-Free Network against Cascading Failure. Physica A: Statistical Mechanics and Its Applications, 444, 458-465.
https://doi.org/10.1016/j.physa.2015.08.017

[4]   Chen, J., Le, A., Wang, Q. and Xi, L. (2016) A Small-World and Scale-Free Network Generated by Sierpinski Pentagon. Physica A: Statistical Mechanics and its Applications, 449, 126-135.
https://doi.org/10.1016/j.physa.2015.12.089

[5]   Li, H., Liao, X., Chen, G., Hill, D.J., Dong, Z. and Huang, T. (2015) Event-Triggered Asynchronous Intermittent Communication Strategy for Synchronization in Complex Dynamical Networks. Neural Networks, 66, 1-10.
https://doi.org/10.1016/j.neunet.2015.01.006

[6]   DÖrfler, F., Chertkov, M. and Bullo, F. (2013) Synchronization in Complex Oscillator Networks and Smart Grids. Proceedings of the National Academy of Sciences, 110, 2005-2010.
https://doi.org/10.1073/pnas.1212134110

[7]   Chen, J., Lu, J.A., Lu, X., Wu, X. and Chen, G. (2013) Spectral Coarse Graining of Complex Clustered Networks. Communications in Nonlinear Science and Numerical Simulation, 18, 3036-3045.
https://doi.org/10.1016/j.cnsns.2013.03.020

[8]   Qin, J., Gao, H. and Zheng, W.X. (2015) Exponential Synchronization of Complex Networks of Linear Systems and Nonlinear Oscillators: A Unified Analysis. IEEE Transactions on Neural Networks and Learning Systems, 26, 510-521.
https://doi.org/10.1109/TNNLS.2014.2316245

[9]   Tang, L., Lu, J.A. and Chen, G. (2012) Synchronizability of Small-World Networks Generated from Ring Networks with Equal-Distance Edge Additions. Chaos: An Interdisciplinary Journal of Nonlinear Science, 22, Article ID: 023121.
https://doi.org/10.1063/1.4711008

[10]   Tang, Y., Qian, F., Gao, H. and Kurths, J. (2014) Synchronization in Complex Networks and Its Application—A Survey of Recent Advances and Challenges. Annual Reviews in Control, 38, 184-198.
https://doi.org/10.1016/j.arcontrol.2014.09.003

[11]   Ming-Ming, X., Jun-An, L. and Jin, Z. (2016) Synchronizability and Eigenvalues of Two-Layer Star Networks. Acta Physica Sinica, 65, Article ID: 028902.

[12]   Fan, J. and Wang, X.F. (2005) On Synchronization in Scale-Free Dynamical Networks. Physica A: Statistical Mechanics and Its Applications, 349, 443-451.
https://doi.org/10.1016/j.physa.2004.09.016

[13]   Fan, J., Li, X. and Wang, X.F. (2005) On Synchronous Preference of Complex Dynamical Networks. Physica A: Statistical Mechanics and its Applications, 355, 657-666.
https://doi.org/10.1016/j.physa.2005.03.049

[14]   Bollobás, B. and Riordan, O. (2004) The Diameter of a Scale-Free Random Graph. Combinatorica, 24, 5-34.
https://doi.org/10.1007/s00493-004-0002-2

[15]   Li, X. and Chen, G. (2003) A Local-World Evolving Network Model. Physica A: Statistical Mechanics and Its Applications, 328, 274-286.
https://doi.org/10.1016/S0378-4371(03)00604-6

[16]   Cao, Y.J., Wang, G.Z., Jiang, Q.Y. and Han, Z.X. (2006) A Neighbourhood Evolving Network Model. Physics Letters A, 349, 462-466.
https://doi.org/10.1016/j.physleta.2005.09.047

[17]   Aziz, M.F., Caetano-Anollés, K. and Caetano-Anollés, G. (2016) The Early History and Emergence of Molecular Functions and Modular Scale-Free Network Behavior. Scientific Reports, 6, Article ID: 25058.
https://doi.org/10.1038/srep25058

[18]   Uzuntarla, M., Yilmaz, E., Wagemakers, A. and Ozer, M. (2015) Vibrational Resonance in a Heterogeneous Scale Free Network of Neurons. Communications in Nonlinear Science and Numerical Simulation, 22, 367-374.
https://doi.org/10.1016/j.cnsns.2014.08.040

[19]   Peng, H., Si, S., Awad, M.K., Zhang, N., Zhao, H. and Shen, X.S. (2016) Toward Energy-Efficient and Robust Large-Scale WSNs: A Scale-Free Network Approach. IEEE Journal on Selected Areas in Communications, 34, 4035-4047.
https://doi.org/10.1109/JSAC.2016.2621618

[20]   Albert, R. and Barabási, A.L. (2002) Statistical Mechanics of Complex Networks. Reviews of Modern Physics, 74, 47.
https://doi.org/10.1103/RevModPhys.74.47

[21]   Wang, X.F. and Chen, G. (2003) Complex Networks: Small-World, Scale-Free and Beyond. IEEE Circuits and Systems Magazine, 3, 6-20.
https://doi.org/10.1109/MCAS.2003.1228503

[22]   Barabási, A.L., Albert, R. and Jeong, H. (1999) Mean-Field Theory for Scale-Free Random Networks. Physica A: Statistical Mechanics and Its Applications, 272, 173-187.
https://doi.org/10.1016/S0378-4371(99)00291-5

[23]   Barahona, M. and Pecora, L.M. (2002) Synchronization in Small-World Systems. Physical Review Letters, 89, Article ID: 054101.
https://doi.org/10.1103/physrevlett.89.054101

[24]   Zhou, T., Zhao, M. and Wang, B.H. (2006) Better Synchronizability Predicted by Crossed Double Cycle. Physical Review E, 73, Article ID: 037101.
https://doi.org/10.1103/physreve.73.037101

[25]   Wang, X.F. and Chen, G. (2002) Synchronization in Small-World Dynamical Networks. International Journal of Bifurcation and Chaos, 12, 187-192.
https://doi.org/10.1142/S0218127402004292

[26]   Wang, L., Jing, Y., Kong, Z. and Dimirovski, G.M. (2008) Adaptive Exponential Synchronization of Uncertain Complex Dynamical Networks with Delay Coupling. NeuroQuantology, 6.
https://doi.org/10.14704/nq.2008.6.4.195

[27]   Li, X. and Chen, G. (2003) Synchronization and Desynchronization of Complex Dynamical Networks: An Engineering Viewpoint. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 50, 1381-1390.
https://doi.org/10.1109/TCSI.2003.818611

[28]   Wu, C.W. and Chua, L.O. (1995) Synchronization in an Array of Linearly Coupled Dynamical Systems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 42, 430-447.
https://doi.org/10.1109/81.404047

 
 
Top