Back
 IJMPCERO  Vol.6 No.2 , May 2017
Magnetic Resonance Perfusion in Brain Tumors: Comparison of Different Evaluation Approaches in Dual-Echo and Multi-Echo Techniques
Abstract: Dynamic measurements of T1 shortening (dynamic contrast enhanced—DCE) as well as of T2* shortening (dynamic susceptibility contrast—DSC) as two separate measurement strategies are widely used to quantitatively describe tumor perfusion and vascularity. Dual-echo approaches allow for the simultaneous assessment of both effects. The extension to multi-echo sequences should inhere the advantage of improved signal-to-noise ratios and more precise sampling of the T2* decay. The aim of our study is to investigate, if an extension of the dual-echo approach to the multi-echo approach allows for more stable quantitative determination of pharmacokinetic parameters in brain tumors. This study applies a multi-echo approach to obtain different estimations of a vascular input function and analyzes various combinations of vascular input functions and pharmacokinetic models. Perfusion measurements were performed with 52 consecutive patients with different brain tumors using a 10-echo gradient echo sequence. Our findings show that the extension to multi-echo sequences leads to an 11%-improvement of the Contrast-to-Noise ratio. Compared to other combinations, an application of Extended Tofts model using the T2*-related venous output function or an output function estimated in the tumor tissue enables the most reliable determination of perfusion parameters, reducing the reproducibility range by a factor of 1.2 to 10 for Ktrans and of 1.2 to 5.5 in the case of rBV calculation. Determination of Ktrans within repeated measurements within about 3 days results as most stable, if AIF from tumor pixels is used as vascular input function, meaning that the scatter is reduced by a factor of 1.2 compared to the next best VIF and by a factor of 10 compared to the worst of the tested approaches. In addition, this study shows that signal decomposition into two components with different Larmor frequencies might provide additional information concerning tissue composition of brain tumors.
Cite this paper: Hietschold, V. , Abramyuk, A. , Juratli, T. , Sitoci-Ficici, K. , Laniado, M. and Linn, J. (2017) Magnetic Resonance Perfusion in Brain Tumors: Comparison of Different Evaluation Approaches in Dual-Echo and Multi-Echo Techniques. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 6, 174-192. doi: 10.4236/ijmpcero.2017.62016.
References

[1]   Rosen, B.R., Belliveau, J.W., Vevea, J.M. and Brady, T.J. (1990) Perfusion Imaging with NMR Contrast Agents. Magnetic Resonance in Medicine, 14, 249-265.
https://doi.org/10.1002/mrm.1910140211

[2]   Hietschold, V. (2004) Aspekte einer quantitativen Gewebecharakterisierung mittels Kontrastmitteldynamik in der Kernspintomographie. Cuvillier, Göttingen.

[3]   El Khouli, R.H., Macura, K.J., Barker, P.B., Habba, M.R., Jacobs, M.A. and Bluemke, D.A. (2009) Relationship of Temporal Resolution to Diagnostic Performance for Dynamic Contrast Enhanced MRI of the Breast. Journal of Magnetic Resonance Imaging, 30, 999-1004.
https://doi.org/10.1002/jmri.21947

[4]   Gutierrez, R.L., Strigel, R.M., Partridge, S.C., DeMartini, W.B., Eby, P.R., Stone, K.M., Peacock, S. and Lehman, C.D. (2012) Dynamic Breast MRI: Does Lower Temporal Resolution Negatively Affect Clinical Kinetic Analysis? American Journal of Roentgenology, 199, 703-708.
https://doi.org/10.2214/AJR.11.7836

[5]   Grøvik, E., Bjørnerud, A., Storås, T.H. and Gjesdal, K.I. (2014) Split Dynamic MRI: Single Bolus High Spatial-Temporal Resolution and Multi Contrast Evaluation of Breast Lesions. Journal of Magnetic Resonance Imaging, 39, 673-682.
https://doi.org/10.1002/jmri.24206

[6]   Miyati, T., Banno, T., Mase, M., Kasai, H., Shundo, H., Imazawa, M. and Ohba, S. (1997) Dual Dynamic Contrast-Enhanced MR Imaging. Journal of Magnetic Resonance Imaging, 7, 230-235.
https://doi.org/10.1002/jmri.1880070136

[7]   Hietschold, V., Klengel, S. and Köhler, K. (1993) Simultaneous Dynamic Measurement of Tissue Contrast Enhancement and Perfusion at 0.5 Tesla: Method and Post-processing. SMRM 11th Annual Meeting, New York, 16-20 August 1993, Book of Abstracts 619.

[8]   Heiland, S., Benner, T., Rempp, K., Reith, W., Forsting, M. and Sartor, K. (1997) Ein Verfahren zur simultanen Beurteilung der Hämodynamik und der dynamischen Kontrastmittelanreicherung bei zerebralen Läsionen mit gestörter Blut-Hirn-Schranke. Fortschr Röntgenstr, 166, S137.

[9]   Calamante, F. (2013) Arterial Input Function in Perfusion MRI: A Comprehensive Review. Progress in Nuclear Magnetic Resonance Spectroscopy, 74, 1-32.
https://doi.org/10.1016/j.pnmrs.2013.04.002

[10]   Patlak, C.S., Blasberg, R.G. and Fenstermacher, J.D. (1983) Graphical Evaluation of Blood-to-Brain Transfer Constants from Multiple-Time Uptake Data. Journal of Cerebral Blood Flow and Metabolism, 3, 1-7.
https://doi.org/10.1038/jcbfm.1983.1

[11]   Tofts, P.S. (1997) Modeling Tracer Kinetics in Dynamic Gd-DTPA Imaging. JMR, 7, 91-101.
https://doi.org/10.1002/jmri.1880070113

[12]   Tofts, P.S., Brix, G., Buckley, D.L., Evelhoch, J.L., Henderson, E., Knopp, M.V., Larsson, H.B.W., Lee, T.Y., Mayr, N.A., Parker, G.J.M., Port, R.E., Taylor, J. and Weisskoff, R.M. (1999) Estimating Kinetic Parameters From Dynamic Contrast-Enhanced T1-Weighted MRI of a Diffusable Tracer: Standardized Quantities and Sym-bols. Journal of Magnetic Resonance Imaging, 10, 223-232.
https://doi.org/10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S

[13]   Bergamino, M., Bonzano, L., Levrero, F., Mancardi, G.L. and Roccatagliata, L. (2014) A Review of Technical Aspects of T1-Weighted Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) in Human Brain Tumors. Physica Medica, 30, 635-643.
https://doi.org/10.1016/j.ejmp.2014.04.005

[14]   Meier, P. and Zierler, K.L. (1954) On the Theory of the Indicator-Dilution Method for Measurement of Blood Flow and Volume. Journal of Applied Physiology, 6, 731-744.

[15]   Zierler, K.L. (1962) Theoretical Basis of Indicator-Dilution Methods for Measuring Flow and Volume. Circulation Research, 10, 393-407.
https://doi.org/10.1161/01.RES.10.3.393

[16]   Clough, A.V., Manuel, A.J., Haworth, S.T. and Dawson, C.A. (2000) Application of Indicator Dilution Theory to Time-Density Curves Obtained from Dynamic Contrast Images. Proc. SPIE 3978, Medical Imaging 2000: Physiology and Function from Multidimensional Images, Location, 20 April 2000, 457.

[17]   Abramyuk, A., Hietschold, V., Appold, S., von Kummer, R. and Abolmaali, N. (2015) Radiochemotherapy-Induced Changes of Tumour Vascularity and Blood Supply Estimated by Dynamic Contrast-Enhanced CT and Fractal Analysis in Malignant Head and Neck Tumours. The British Journal of Radiology, 88, 20140412.
https://doi.org/10.1259/bjr.20140412

[18]   Yoruk, U., Saranathan, M., Loening, A.M., Hargreaves, B.A. and Vasanawa, S.S. (2016) High Temporal Resolution Dynamic MRI and Arterial Input Function for Assessment of GFR in Pediatric Subjects. Magnetic Resonance in Medicine, 75, 1301-1311.
https://doi.org/10.1002/mrm.25731

[19]   Jelescu, I.O., Leppert, I.R., Narayanan, S., Araújo, D., Arnold, D.L. and Pike, G.B. (2011) Dual-Temporal Resolution Dynamic Contrast-Enhanced MRI Protocol for Blood-Brain Barrier Permeability Measurement in Enhancing Multiple Sclerosis Lesions. Journal of Magnetic Resonance Imaging, 33, 1291-1300.
https://doi.org/10.1002/jmri.22565

[20]   Pierre, E.Y., Ma, D., Chen, Y., Badve, C. and Griswold, M.A. (2016) Multiscale Reconstruction for MR Fingerprinting. Magnetic Resonance in Medicine, 75, 2481-2492.
https://doi.org/10.1002/mrm.25776

[21]   Stokes, A.M. and Quarles, C.C. (2016) A Simplified Spin and Gradient Echo Approach for Brain Tumor Perfusion Imaging. Magnetic Resonance in Medicine, 75, 356-362.
https://doi.org/10.1002/mrm.25591

[22]   Rijpkema, M., Kaanders, J.H.A.M., Joosten, F.B.M., van der Kogel, A.J. and Heerschap, A. (2001) Method for Quantitative Mapping of Dynamic MRI Contrast Agent Uptake in Human Tumors. JMRI, 14, 457-463.
https://doi.org/10.1002/jmri.1207

[23]   Chen, J., Yao, J. and Thomasson, D. (2008) Automatic Determination of Arterial Input Function for Dynamic Contrast Enhanced MRI in Tumor Assessment. Medical Image Computing and Computer-Assisted Intervention, 11, 594-601.
https://doi.org/10.1007/978-3-540-85988-8_71

[24]   Yin, J., Yang, J. and Guo, Q. (2015) Automatic Determination of the Arterial Input Function in Dynamic Susceptibility Contrast MRI: Comparison of Different Reproducible Clustering Algorithms. Neuroradiology, 57, 535-543.
https://doi.org/10.1007/s00234-015-1493-9

[25]   Yuan, J., Chow, S.K.K., Zhang, Q., Yeung, D.K.W., Ahuja, A.T. and King, A.D. (2013) The Use of Dynamic Tracer Concentration in Veins for Quantitative DCE-MRI Kinetic Analysis in Head and Neck. PLoS ONE, 8, e59885.
https://doi.org/10.1371/journal.pone.0059885

[26]   Shukla-Dave, A., Lee, N., Stambuk, H., Wang, Y., Huang, W., Thaler, H.T., Patel, S.G., Shah, J.P. and Koutcher, J.A. (2009) Average Arterial Input Function for Quantitative Dynamic Contrast Enhanced Magnetic Resonance Imaging of Neck Nodal Metastases. BMC Medical Physics, 9, 4.
https://doi.org/10.1186/1756-6649-9-4

[27]   Natsume, T., Ishida, M., Kitagawa, K., Nagata, M., Sakuma, H. and Ichihara, T. (2015) Theoretical Considerations in Measurement of Time Discrepancies between Input and Myocardial Time-Signal Intensity Curves in Estimates of Regional Myocardial Perfusion with First-Pass Contrast-Enhanced MRI. Magnetic Resonance in Medicine, 33, 1059-1065.
https://doi.org/10.1016/j.mri.2015.06.015

[28]   Hietschold, V., Gohl, P., Abramyuk, A., Koch, A., Laniado, M. and Abolmaali, N. (2007) Evaluation of CT Perfusion Results from Human Tumors: A Comparison of Four Different Two-Compartment Models. Radiological Society of North America, Scientific Assembly and Annual Meeting, Chicago, 25 November-30 November 2007. http://archive.rsna.org/2007/5003088.html

[29]   Gaens, M.E., Backes, W.H., Rozel, S., Lipperts, M., Sanders, S.N., Jaspers, K., Cleutjens, J.P.M., Sluimer, J.C., Heeneman, S., Daemen, M.J.A.P., Welten, R.J.T.J., Daemen, J.W.H., Wildberger, J.E., Kwee, R.M. and Kooi, M.E. (2013) Dynamic Contrast-Enhanced MR Imaging of Carotid Atherosclerotic Plaque: Model Selection, Reproducibility, and Validation. Radiology, 266, 271-279.
https://doi.org/10.1148/radiol.12120499

[30]   Hindel, S., Söhner, A., Maaß, M., Sauerwein, W., Baba, H.A., Kramer, M. and Lüdemann, L. (2017) Validation of Interstitial Fractional Volume Quantification by Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Porcine Skeletal Muscles. Investigative Radiology, 52, 66-73.
https://doi.org/10.1097/RLI.0000000000000309

[31]   Neubauer, H., Li, M., Kuehne-Heid, R., Schneider, A. and Kaiser, W.A. (2003) High Grade and Non-High Grade Ductal Carcinoma in Situ on Dynamic MR Mammography: Characteristic Findings for Signal Increase and Morphological Pattern of Enhancement. The British Journal of Radiology, 76, 3-12.
https://doi.org/10.1259/bjr/14883856

[32]   Heye, A.K., Culling, R.D., Valdez Hernandez, M., Trippleton, M.J. and Wardlaw, J.M. (2014) Assessment of Blood-Brain Barrier Disruption Using Dynamic Contrast-Enhanced MRI. A Systematic Review. NeuroImage: Clinical, 6, 262-274.
https://doi.org/10.1016/j.nicl.2014.09.002

[33]   Wang, H.Z., Riederer, S.J. and Lee, J.N. (1987) Optimizing the Precision in T1 Relaxation Estimation Using Limited Flip Angles. Magnetic Resonance in Medicine, 5, 399-416.
https://doi.org/10.1002/mrm.1910050502

[34]   Dixon, W.T. (1984) Simple Proton Spectroscopic Imaging. Radiology, 153, 189-194.
https://doi.org/10.1148/radiology.153.1.6089263

[35]   Glover, G.H. (1991) Multipoint Dixon Technique for Water and Fat Proton and Susceptibility Imaging. Journal of Magnetic Resonance Imaging, 1, 521-530.
https://doi.org/10.1002/jmri.1880010504

[36]   Ma, J. (2008) Dixon Techniques for Water and Fat Imaging. JMRI, 28, 543-558.
https://doi.org/10.1002/jmri.21492

[37]   Hernando, D., Kramer, J.H. and Reeder, S.B. (2013) Multipeak Fat-Corrected Complex R2* Relaxometry: Theory, Optimization, and Clinical Validation. Magnetic Resonance in Medicine, 70, 1319-1331.
https://doi.org/10.1002/mrm.24593

 
 
Top