Back
 JAMP  Vol.5 No.5 , May 2017
Numerical Computation of Structured Singular Values for Companion Matrices
Abstract: In this article, the computation of μ-values known as Structured Singular Values SSV for the companion matrices is presented. The comparison of lower bounds with the well-known MATLAB routine mussv is investigated. The Structured Singular Values provides important tools to analyze the stability and instability analysis of closed loop time invariant systems in the linear control theory as well as in structured eigenvalue perturbation theory.
Cite this paper: Rehman, M. and Tabassum, S. (2017) Numerical Computation of Structured Singular Values for Companion Matrices. Journal of Applied Mathematics and Physics, 5, 1057-1072. doi: 10.4236/jamp.2017.55093.
References

[1]   Packard, A. and Doyle, J. (1993) The Complex Structured Singular Value. Automatica, 29, 71-109.

[2]   Bernhardsson, B., Rantzer, A. and Qiu, L. (1998) Real Perturbation Values and Real Quadratic Forms in a Complex Vector Space. Linear Algebra and Its Applications, 270, 131-154.

[3]   Chen, J., Fan, M.K.H. and Nett, C.N. (1996) Structured Singular Values with Nondiagonal Structures. I. Characterizations. IEEE Transactions on Automatic Control, 41, 1507-1511.
https://doi.org/10.1109/9.539434

[4]   Hinrichsen, D. and Pritchard, A.J. (2005) Mathematical Systems Theory I. In: Texts in Applied Mathematics, Vol. 48, Springer-Verlag, Berlin.

[5]   Karow, M., Kokiopoulou, E. and Kressner, D. (2010) On the Computation of Structured Singular Values and Pseudospectra. Systems & Control Letters, 59, 122-129.

[6]   Karow, M., Kressner, D. and Tisseur, F. (2006) Structured Eigenvalue Condition Numbers. SIAM Journal on Matrix Analysis and Applications, 28, 1052-1068.
https://doi.org/10.1137/050628519

[7]   Qiu, L., Bernhardsson, B., Rantzer, A., Davison, E.J., Young, P.M. and Doyle, J.C. (1995) A Formula for Computation of the Real Stability Radius. Automatica, 31, 879-890.

[8]   Braatz, R.P., Young, P.M., Doyle, J.C. and Morari, M. (1994) Computational Complexity of µ Calculation. IEEE Transactions on Automatic Control, 39, 1000-1002.
https://doi.org/10.1109/9.284879

[9]   Fan, M.K.H., Tits, A.L. and Doyle, J.C. (1991) Robustness in the Presence of Mixed Parametric Uncertainty and Unmodeled Dynamics. IEEE Transactions on Automatic Control, 36, 25-38.
https://doi.org/10.1109/9.62265

[10]   Young, P.M., Newlin, M.P. and Doyle, J.C. (1992) Practical Computation of the Mixed µ Problem. American Control Conference, Chicago, IL, 24-26 June 1992, 2190-2194.

[11]   Packard, A., Fan, M.K.H. and Doyle, J. (1998) A Power Method for the Structured Singular Value. Proceedings of the 27th IEEE Conference on Decision and Control, Austin, TX, 7-9 December 1988, 2132-2137.

[12]   Young, P.M., Doyle, J.C., Packard, A., et al. (1994) Theoretical and Computational Aspects of the Structured Singular Value. Systems, Control and Information, 38, 129-138.

[13]   Guglielmi, N., Rehman, M.-U. and Kressner, D. (2016) A Novel Iterative Method to Approximate Structured Singular Values. arXiv preprint arXiv:1605.04103

[14]   Zhou, K., Doyle, J. and Glover, K. (1996) Robust and Optimal Control. Vol. 40, Prentice Hall, Upper Saddle River, NJ.

[15]   Kato, T. (2013) Perturbation Theory for Linear Operators. Vol. 132, Springer Science & Business Media, Berlin, Heidelberg.

[16]   Guglielmi, N. and Lubich, C. (2011) Differential Equations for Roaming Pseudospectra: Paths to Extremal Points and Boundary Tracking. SIAM Journal on Numerical Analysis, 49, 1194-1209.
https://doi.org/10.1137/100817851

[17]   Guglielmi, N. and Lubich, C. (2013) Low-Rank Dynamics for Computing Extremal Points of Real Pseudospectra. SIAM Journal on Matrix Analysis and Applications, 34, 40-66.
https://doi.org/10.1137/120862399

[18]   Lehoucq, R.B. and Sorensen, D.C. (1996) Deflation Techniques for an Implicitly Restarted Arnoldi Iteration. SIAM Journal on Matrix Analysis and Applications, 17, 789-821.
https://doi.org/10.1137/S0895479895281484

[19]   Lehoucq, R.B., Sorensen, D.C. and Yang, C. (1998) ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM, Vol. 6.

 
 
Top