Quantum Entanglement as a Consequence of a Cantorian Micro Spacetime Geometry

References

[1] J. S. Bell, “Speakable and Unspeakable in Quantum Mechan-ics,” Cambridge, 1987.

[2] L. Hardy, “Nonlocality for Two Particles without Inequalities,” Physical Review Letters, Vol. 71 No. 11, 1993, pp. 1665-1668. doi:10.1103/PhysRevLett.71.1665

[3] M. S. El Naschie, “A Review of E-Infinity Theory and the Mass Spectrum of High Energy Particle Physics,” Chaos, Solitons & Fractals, Vol. 19, No. 1, 2004, pp. 209-236.

[4] M. S. El Naschie, “The Theory of Cantorian Spacetime and High Energy Particle Physics (an Informal Review),” Chaos, Solitons & Fractals, Vol. 41, No. 5, 2009, pp. 2635-2646. doi:10.1016/j.chaos.2008.09.059

[5] J.-H. He, et al., “The Importance of the Empty Set and Noncommutative Geometry in Underpinning the Foundations of Quantum Physics,” Nonlinear Science Letters B, Vol. 1, No. 1, 2001, pp. 15-24.

[6] M. S. El Naschie, “Quantum Collapse of Wave Interference Pattern in the Two-Slit Experiment: A Set Theo-retical Resolution,” Nonlinear Science Letters A, Vol. 2, No. 1, 2011, pp. 1-9.

[7] J.-H. He, et al., “Quantum Golden Mean Entanglement Test as the Signature of the Fractality of Micro Spacetime,” Nonlinear Science Letters B, Vol. 1, No. 2, 2011, pp. 45-50.