OJFD  Vol.7 No.2 , June 2017
MHD Free Convection Flow past an Inclined Stretching Sheet with Considering Viscous Dissipation and Radiation
Abstract: The present study concentrates on the analysis of MHD free convection flow past an inclined stretching sheet. The viscous dissipation and radiation effects are assumed in the heat equation. Approximation solutions have been derived for velocity, temperature, concentration, Nusselt number, skin friction and Sherwood number using Nachtsheim-Swigert shooting iteration technique along with the six-order Runge-Kutta iteration scheme. Graphs are plotted to find out the characteristics of different physical parameters. The variations of physical parameters on skin friction coefficient, Nusselt number and Sherwood number are displayed via table.
Cite this paper: Hasan, M. , Karim, E. and Samad, A. (2017) MHD Free Convection Flow past an Inclined Stretching Sheet with Considering Viscous Dissipation and Radiation. Open Journal of Fluid Dynamics, 7, 152-168. doi: 10.4236/ojfd.2017.72010.

[1]   Ostrach, S. (1952) Laminar Natural Convection Flow and Heat Transfer of Fluid with and without Heat Source in Channels with Constant Wall Temperature. NACA TN 2863.

[2]   Hossain, M.A. and Takhar, H.S. (1996) Radiation Effects on Mixed Convection Along a Vertical Plate with Uniform Surface Temperature. Heat and Mass Transfer, 31, 243-248.

[3]   Ali, M.M., Chen, T.S. and B.F. Armaly (1984) Natural Convection Radiation Interaction in Boundary Layer Flow over Horizontal Surface. AIAA Journal, 22, 1797-1803.

[4]   Mamsour, M.A. (1990) Radiation and Free Convection Effects on the Oscillatory Flow Past a Vertical Plate. Astrophysics and Space Science, 166, 269-275.

[5]   Alabrara, M.A., Bestman, A.R. and Ogulu, A. (1992) Laminar Convection in Binary Mixed of Hydromagnetic Flow with Radiation Heat Transfer. Astrophysics and Space Science, 195, 431-439.

[6]   Sattar, M.A. and Kalim, H. (1996) Unsteady Free Convection Interaction with Thermal Radiation in a Boundary Layer Flow past a Vertical Porous Plate. Journal of Mathematical and Physical Sciences, 30, 25-37.

[7]   Chen, C.-H. (2004) Heat and Mass Transfer in MHD Flow by Natural Convection from a Permeable, Inclined Surface with Variable Wall Temperature and Concentration. Acta Mechanica, 172, 219-235.

[8]   Anajali Devi, S.P. and Ganga, B. (2009) Viscous Dissipation Effects on Non-Linear MHD Flow in a Porous Medium over a Stretching Surface. International Journal of Applied Mathematics and Mechanics, 5, 45-59.

[9]   Jha, B.K. and Ajibade, A.O. (2011) Effect on Viscous Dissipation on Natural Convection Flow between Vertical Parallel Plates with Time-Periodic Boundary Conditions. Thermophysics and Aeromechanics, 18, 561-571.

[10]   Ferdows, M., Nazmul and Ota, M. (2011) Thermophoresis and Chemical Reaction Effects on MHD Natural Convective Heat and Mass Transfer Flow in a Rotating Fluid Considering Heat and Mass Fluxes. Canadian Journal on Science and Engineering Mathematics, 2, 114-139.

[11]   Hemly, K.A. (1995) MHD Boundary Layer Equations for Power Law Fluids with Variable Electric Conductivity. Meccanica, 30, 187-200.

[12]   Nachtsheim, P.R. and Swigert, P. (1965) Satisfaction of the Asymptotic Boundary Conditions in Numerical Solution of the System of Non-Linear Equations of Boundary Layer Type. NASA TND-3004.