Back
 AiM  Vol.7 No.4 , April 2017
Activation without Proteolysis of Anti-σ Factor RsiV of the Extracytoplasmic Function σ Factor σV in a Glucolipid-Deficient Mutant of Bacillus subtilis
Abstract: Extracytoplasmic function (ECF) σ factors are a crucial link in the process of bacterial response to environmental stresses, in which bacteria transmit information across the cytoplasmic membrane. Among the seven ECF σ factors of Bacillus subtilis σV, which is sequestered by transmembrane anti-σ factor RsiV under normal growth conditions, responds to lysozyme. When B. subtilis cells are challenged by lysozyme, the lysozyme-bound RsiV undergoes two successive proteolysis steps, by a signal peptidase and RasP protease, and releases σV. An unchallenged B. subtilis ugtP mutant lacking glucolipids exhibited higher σV activity than wild type. However, the activation occurred in the absence of RasP, and no proteolysis of RsiV was observed. It is likely that a conformational change, not proteolysis, of RsiV leads to this activation of σV in the absence of glucolipids. Replacement of the C-terminal region of RsiV with that of RsiW, the cognate σ factor of which, σW, is not activated in the ugtP mutant, indicated that the C-terminal extracytoplasmic region of RsiV was necessary for the response to glucolipid deficiency.
Cite this paper: Seki, T. , Matsumoto, K. , Matsuoka, S. and Hara, H. (2017) Activation without Proteolysis of Anti-σ Factor RsiV of the Extracytoplasmic Function σ Factor σV in a Glucolipid-Deficient Mutant of Bacillus subtilis. Advances in Microbiology, 7, 315-327. doi: 10.4236/aim.2017.74026.
References

[1]   Helmann, J.D. (2002) The Extracytoplasmic Function (ECF) Sigma Factors. Advances in Microbial Physiology, 46, 47-110.

[2]   Yoshimura, M., Asai, K., Sadaie, Y. and Yoshikawa, H. (2004) Interaction of Bacillus subtilis Extracytoplasmic Function (ECF) Sigma Factors with the N-Terminal Regions of Their Potential Anti-Sigma Factors. Microbiology, 150, 591-599.
https://doi.org/10.1099/mic.0.26712-0

[3]   Asai, K., Matsumoto, T. and Sadaie, Y. (2005) ECF (Extracytoplasmic Function) Sigma Factors of Bacillus subtilis. In: Yamada, M., Ed., Survival and Death in Bacteria, Research Signpost, Kerala, 143-153.

[4]   Ho, T.D., Hastie, J.L., Intile, P.J. and Ellermeier, C.D. (2011) The Bacillus subtilis Extracytoplasmic Function Sigma Factor σV Is Induced by Lysozyme and Provides Resistance to Lysozyme. Journal of Bacteriology, 193, 6215-6222.
https://doi.org/10.1128/JB.05467-11

[5]   Hastie, J.L., Williams, K.B. and Ellermeier, C.D. (2013) The Activity of σV, an Extracytoplasmic Function σ Factor of Bacillus subtilis, Is Controlled by Regulated Proteolysis of the Anti-σ Factor RsiV. Journal of Bacteriology, 195, 3135-3144.
https://doi.org/10.1128/JB.00292-13

[6]   Hastie, J.L., Williams, K.B., Sepulveda, C., Houtman, J.C., Forest, K.T. and Ellermeier, C.D. (2014) Evidence of a Bacterial Receptor for Lysozyme: Binding of Lysozyme to the Anti-σ Factor RsiV Controls Activation of the ECF σ Factor σV. PLoS Genetics, 10, e1004643.
https://doi.org/10.1371/journal.pgen.1004643

[7]   Hastie, J.L., Williams, K.B., Bohr, L.L., Houtman, J.C., Gakhar, L. and Ellermeier, C.D. (2016) The Anti-Sigma Factor RsiV Is a Bacterial Receptor for Lysozyme: Co-Crystal Structure Determination and Demonstration That Binding of Lysozyme to RsiV Is Required for σV Activation. PLoS Genetics, 12, e1006287.
https://doi.org/10.1371/journal.pgen.1006287

[8]   Matsumoto, K., Matsuoka, S. and Hara, H. (2012) Membranes and Lipids. In: Sadaie, Y. and Matsumoto, K., Eds., Escherichia coli and Bacillus subtilis: The Frontier of Molecular Microbiology Revisited, Research Signpost, Kerala, 61-91.

[9]   De Mendoza, D., Schujman, G.E. and Aguilar, P.S. (2002) Biosynthesis and Function of Membrane Lipids. In: Sonenshein, A.L., Hoch, J.A., and Losick, R., Eds., Bacillus Subtilis and Its Closest Relatives, ASM Press, Washington DC, 43-55.
https://doi.org/10.1128/9781555817992.ch5

[10]   Jorasch, P., Wolter, F.P., Zahringer, U. and Heinz, E. (1998) A UDP Glucosyltransferase from Bacillus subtilis Successively Transfers up to Four Glucose Residues to 1,2-Diacylglycerol: Expression of YpfP in Escherichia coli and Structural Analysis of Its Reaction Products. Molecular Microbiology, 29, 419-430.
https://doi.org/10.1046/j.1365-2958.1998.00930.x

[11]   Weart, R.B., Lee, A.H., Chien, A.C., Haeusser, D.P., Hill, N.S. and Levin, P.A. (2007) A Metabolic Sensor Governing Cell Size in Bacteria. Cell, 130, 335-347.

[12]   Price, K.D., Roels, S. and Losick, R. (1997) A Bacillus subtilis Gene Encoding a Protein Similar to Nucleotide Sugar Transferases Influences Cell Shape and Viability. Journal of Bacteriology, 179, 4959-4961.
https://doi.org/10.1128/jb.179.15.4959-4961.1997

[13]   Matsuoka, S., Chiba, M., Tanimura, Y., Hashimoto, M., Hara, H. and Matsumoto, K. (2011) Abnormal Morphology of Bacillus subtilis UgtP Mutant Cells Lacking Glucolipids. Genes & Genetic Systems, 86, 295-304.
https://doi.org/10.1266/ggs.86.295

[14]   Hashimoto, M., Seki, T., Matsuoka, S., Hara, H., Asai, K., Sadaie, Y. and Matsumoto, K. (2013) Induction of Extracytoplasmic Function Sigma Factors in Bacillus subtilis Cells with Defects in Lipoteichoic Acid Synthesis. Microbiology, 159, 23-35.
https://doi.org/10.1099/mic.0.063420-0

[15]   Seki, T., Mineshima, R., Hashimoto, M., Matsumoto, K., Hara, H. and Matsuoka, S. (2015) Repression of the Activities of Two Extracytoplasmic Function Sigma Factors, σM and σV, of Bacillus subtilis by Glucolipids in Escherichia coli Cells. Genes & Genetic Systems, 90, 109-114.
https://doi.org/10.1266/ggs.90.109

[16]   Matsuoka, S., Seki, T., Matsumoto, K. and Hara, H. (2016) Suppression of Abnormal Morphology and Extracytoplasmic Function Sigma Activity in Bacillus subtilis UgtP Mutant Cells by Expression of Heterologous Glucolipid Synthases from Acholeplasma laidlawii. Bioscience, Biotechnology, and Biochemistry, 80, 2325-2333.
https://doi.org/10.1080/09168451.2016.1217147

[17]   Shibuya, I. (1992) Metabolic Regulations and Biological Functions of Phospholipids in Escherichia coli. Progress in Lipid Research, 31, 245-299.

[18]   Alba, B.M. and Gross, C.A. (2004) Regulation of the Escherichia coli σE-Dependent Envelope Stress Response. Molecular Microbiology, 52, 613-619.
https://doi.org/10.1111/j.1365-2958.2003.03982.x

[19]   Kanehara, K., Ito, K. and Akiyama, Y. (2002) YaeL (EcfE) Activates the σE Pathway of Stress Response through a Site-2 Cleavage of Anti-σE, RseA. Genes & Development, 16, 2147-2155.
https://doi.org/10.1101/gad.1002302

[20]   Kanehara, K., Ito, K. and Akiyama, Y. (2003) YaeL Proteolysis of RseA Is Controlled by the Pdz Domain of YaeL and a Gln-Rich Region of RseA. EMBO Journal, 22, 6389-6398.
https://doi.org/10.1093/emboj/cdg602

[21]   Morimoto, T., Ara, K., Ozaki, K. and Ogasawara, N. (2009) A New Simple Method to Introduce Marker-Free Deletions in the Bacillus subtilis Genome. Genes & Genetic Systems, 84, 315-318.
https://doi.org/10.1266/ggs.84.315

[22]   Anagnostopoulos, C. and Crawford, I.P. (1961) Transformation Studies on the Linkage of Markers in the Tryptophan Pathway in Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America, 47, 378-390.
https://doi.org/10.1073/pnas.47.3.378

[23]   Lewis, P.J. and Marston, A.L. (1999) GFP Vectors for Controlled Expression and Dual Labelling of Protein Fusions in Bacillus subtilis. Gene, 227, 101-110.

[24]   Morimoto, T., Loh, P.C., Hirai, T., Asai, K., Kobayashi, K., Moriya, S. and Ogasawara, N. (2002) Six GTP-Binding Proteins of the Era/Obg Family Are Essential for Cell Growth in Bacillus subtilis. Microbiology, 148, 3539-3552.
https://doi.org/10.1099/00221287-148-11-3539

[25]   Miller, J.H. (1992) A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

[26]   Sambrook, J. and Russell, D.W. (2001) Molecular Cloning: A Laboratory Manual. 3rd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

[27]   Wang, P.Z. and Doi, R.H. (1984) Overlapping Promoters Transcribed by Bacillus subtilis σ55 and σ37 RNA Polymerase Holoenzymes during Growth and Stationary Phases. Journal of Biological Chemistry, 259, 8619-8625.

[28]   Feng, L., Yan, H., Wu, Z., Yan, N., Wang, Z., Jeffrey, P.D. and Shi, Y. (2007) Structure of a Site-2 Protease Family Intramembrane Metalloprotease. Science, 318, 1608-1612.
https://doi.org/10.1126/science.1150755

[29]   Heinrich, J., Hein, K. and Wiegert, T. (2009) Two Proteolytic Modules Are Involved in Regulated Intramembrane Proteolysis of Bacillus subtilis RsiW. Molecular Microbiology, 74, 1412-1426.
https://doi.org/10.1111/j.1365-2958.2009.06940.x

[30]   Schöbel, S., Zellmeier, S., Schumann, W. and Wiegert, T. (2004) The Bacillus subtilis σW Anti-Sigma Factor RsiW Is Degraded by Intramembrane Proteolysis through YluC. Molecular Microbiology, 52, 1091-1105.
https://doi.org/10.1111/j.1365-2958.2004.04031.x

[31]   Wiegert, T., Homuth, G., Versteeg, S. and Schumann, W. (2001) Alkaline Shock Induces the Bacillus subtilis σW Regulon. Molecular Microbiology, 41, 59-71.
https://doi.org/10.1046/j.1365-2958.2001.02489.x

[32]   Inoue, H. (2013) Analysis of Extracytoplasmic Stress Response Mechanisms Contributing to Cell Surface Integrity in Bacillus subtilis. PhD Thesis, Saitama University, Saitama. (In Japanese)

[33]   Dowhan, W. and Bogdanov, M. (2009) Lipid-Dependent Membrane Protein Topogenesis. Annual Review of Biochemistry, 78, 515-540.
https://doi.org/10.1146/annurev.biochem.77.060806.091251

[34]   Matsuoka, S., Hashimoto, M., Kamiya, Y., Miyazawa, T., Ishikawa, K., Hara, H. and Matsumoto, K. (2011) The Bacillus subtilis Essential Gene DgkB Is Dispensable in Mutants with Defective Lipoteichoic Acid Synthesis. Genes & Genetic Systems, 86, 365-376.
https://doi.org/10.1266/ggs.86.365

[35]   Zellmeier, S., Schumann, W. and Wiegert, T. (2006) Involvement of Clp Protease Activity in Modulating the Bacillus subtilis σW Stress Response. Molecular Microbiology, 61, 1569-1582.
https://doi.org/10.1111/j.1365-2958.2006.05323.x

 
 
Top