MSCE  Vol.5 No.4 , April 2017
Enhancement of Oxygen Evolution Activity of Ruddlesden-Popper-Type Strontium Ferrite by Stabilizing Fe4+
Abstract: Development of active iron based water oxidation for designing an ideal artificial photosynthesis devices operating under benign neutral pH is highly demanded. We investigated the electrocatalytic activity of Ruddlesden-Pop-per-type strontium ferrite (Sr3Fe2O7) toward the oxygen evolution reaction (OER). Owing to the temperature-dependent efficiency of the charge disproportionation of Fe4+, the OER activity of Sr3Fe2O7 varied with the temperature, and the onset potential for the OER at a neutral pH underwent a negative shift of approximately 200 mV by increasing the temperature for the stabilization of Fe4+. When metal substitution was made to Sr3Fe2O7 for stabilizing Fe4+ at room temperature, the temperature dependence of the OER activity disappeared and the OER was driven at a small overpotential without increasing the temperature, indicating that the stabilization of Fe4+ is substantially important for achieving high OER activity.
Cite this paper: Takashima, T. , Ishikawa, K. and Irie, H. (2017) Enhancement of Oxygen Evolution Activity of Ruddlesden-Popper-Type Strontium Ferrite by Stabilizing Fe4+. Journal of Materials Science and Chemical Engineering, 5, 45-55. doi: 10.4236/msce.2017.54005.

[1]   Gray, H.B. (2009) Powering the Planet with Solar Fuel. Nature Chemistry, 1, 7.

[2]   Lewis, N.S. and Nocera, D.G. (2006) Powering the Planet: Chemical Challenges in Solar Energy Utilization. Proceedings of the National Academy of Sciences, 103, 15729-15735.

[3]   Fujishima, A. and Honda, K. (1972) Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238, 37-38.

[4]   Meyer, T. (2008) Catalysis: The Art of Splitting Water. Nature, 451, 778.

[5]   Walter, M.G., Warren, E.L., McKone, J.R., Boettcher, S.W., Mi, Q., Santori, E.A. and Lewis, N.S. (2010) Solar Water Splitting Cells. Chemical Reviews, 110, 6446-6473.

[6]   Lee, Y., Suntivich, J., May, K.J., Perry, E.E. and Shao-Horn, Y. (2012) Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions. The Journal of Physical Chemistry Letters, 3, 399-404.

[7]   Chao, Y., Hernandez-Pagan, E.A., Vargas-Barbosa, N.M., Dysart, J.L. and Mallouk, T.E. (2011) A High Yield Synthesis of Ligand-Free Iridium Oxide Nanoparticles with High Electrocatalytic Activity. The Journal of Physical Chemistry Letters, 2, 402-406.

[8]   Chandra, D., Takama, D., Masaki, T., Sato, T., Abe, T., Togashi, T., Kurihara, M., Saito, K., Yui, T. and Yagi, M. (2016) Highly Efficient Electrocatalysis and Mechanistic Investigation of Intermediate IrOx(OH)y Nanoparticle Films for Water Oxidation. ACS Catalysis, 6, 3946-3954.

[9]   Jin, K., Chu, A., Park, J., Jeong, D., Jerng, S.E., Sim, U., Jeong, H.-Y., Lee, C.W., Park, Y.-S., Yang, K.D., Pradhan, G.K., Kim, D., Sung, N.-E., Kim, S.H. and Nam, K.T. (2015) Partially Oxidized Sub-10 nm MnO Nanocrystals with High Activity for Water Oxidation Catalysis. Scientific Reports, 5, 10279.

[10]   McCrory, C.C.L., Jung, S., Peters, J.C. and Jaramillo, T.F. (2013) Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. Journal of the American Chemical Society, 135, 16977-16987.

[11]   Hunter, B.M., Gray, H.B. and Müller, A.M. (2016) Earth-Abundant Heterogeneous Water Oxidation Catalysts. Chemical Reviews, 116, 14120-14136.

[12]   Suntivich, J., May, K.J., Gasteiger, H.A., Goodenough, J.B. and Shao-Horn, Y. (2011) A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles. Science, 334, 1383-1385.

[13]   Yagi, S., Yamada, I., Tsukasaki, H., Seno, A., Murakami, M., Fujii, H., Chen, H., Umezawa, N., Abe, H., Nishiyama, N. and Mori, S. (2015) Covalency-Reinforced Oxygen Evolution Reaction Catalyst. Nature Communications, 6, 8249.

[14]   Smith, R.D.L., Prévot, M.S., Fagan, R.D., Zhang, Z., Sedach, P.A., Siu, M.K.J., Trudel, S. and Berlinguette, C.P. (2013) Photochemical Route for Accessing Amorphous Metal Oxide Materials for Water Oxidation Catalysis. Science, 340, 60-63.

[15]   Townsend, T.K., Sabio, E.M., Browning, N.D. and Osterloh, F.E. (2011) Photocatalytic Water Oxidation with Suspended Alpha-Fe2O3 Particles-Effects of Nanoscaling. Energy & Environmental Science, 4, 4270-4275.

[16]   Gorlin, M., Gliech, M., De Araújo, J.F., Dresp, S., Bergmann, A. and Strasser, P. (2016) Dynamical Changes of a Ni-Fe Oxide Water Splitting Catalyst Investigated at Different pH. Catalysis Today, 262, 65-73.

[17]   Trzesniewski, B.J., Diaz-Morales, O., Vermass, D.A., Longo, A., Bras, W., Koper, M.T.M. and Smith, W.A. (2015) In Situ Observation of Active Oxygen Species in Fe-Containing Ni-Based Oxygen Evolution Catalysts: The Effect of pH on Electrochemical Activity. Journal of the American Chemical Society, 137, 15112-15121.

[18]   Takashima, T., Ishikawa, K. and Irie, H. (2016) Detection of Intermediate Species in Oxygen Evolution on Hematite Electrodes Using Spectroelectrochemical Measurements. The Journal of Physical Chemistry C, 120, 24827-24834.

[19]   Takashima, T., Ishikawa, K. and Irie, H. (2016) Efficient Oxygen Evolution on Hematite at Neutral pH Enabled by Proton-Coupled Electron Transfer. Chemical Communications, 52, 14015-14018.

[20]   Zandi, O. and Hamann, T.W. (2016) Determination of Photoelectrochemical Water Oxidation Intermediates on Haematite Electrode Surfaces Using Operando Infrared Spectroscopy. Nature Chemistry, 8, 778-783.

[21]   Chen, J.Y., Dang, L., Liang, H., Bi, W., Gerken, J.B., Jin, S., Alp, E.E. and Stahl, S.S. (2015) Operando Analysis of NiFe and Fe Oxyhydroxide Electrocatalysts for Water Oxidation: Detection of Fe4+ by Mossbauer Spectroscopy. Journal of the American Chemical Society, 137, 15090-15093.

[22]   Barroso, M., Mesa, C.A., Pendlebury, S.R., Cowan, A.J., Hisatomi, T., Sivula, K., Gratzel, M., Klug, D.R. and Durrant, J.R. (2012) Dynamics of Photogenerated Holes in Surface Modified-Fe2O3 Photoanodesfor Solar Water Splitting. Proceedings of the National Academy of Sciences, 109, 15640-15645.

[23]   Bocquet, A.E., Suga, S., Kimizuka, N., Takeda, Y. and Takano, M. (1992) Electronic Structure of SrFe4+O and Related Fe Perovskite Oxides. Physical Review B, 45, 1561-1570.

[24]   Yabuuchi, N. and Komaba, S. (2014) Recent Research Progress on Iron-and Manganese-Based Positive Electrode Materials for Rechargeable Sodium Batteries. Science and Technology of Advanced Materials, 15, Article ID: 043501.

[25]   Takashima, T., Ishikawa, K. and Irie, H. (2014) Thermal Activiation of Sr3Fe2O7 Electrocatalysts for Water Oxidation at Neutral pH. ECS Transactions, 61, 35-41.

[26]   Kuzushita, K., Morimoto, S., Nasu, S. and Nakamura, S. (2000) Charge Disproportionation and Antiferromagnetic Order of Sr3Fe2O7. Journal of the Physical Society of Japan, 69, 2767-2770.

[27]   Adler, P. (1997) Electronic State, Magnetism, and Electrical Transport Behavior of Sr3-xAxFe2O7 (x ≤ 0.4, A = Ba, La). Journal of Solid State Chemistry, 130, 129-139.

[28]   Adler, P. (1999) Charge Disproportionation in Iron (IV) Oxides: Electronic Properties and Magnetism in Sr3Fe2-xTixO7-y Annealed at High Oxygen Pressures. Journal of Materials Chemistry, 9, 471-477.

[29]   Matvejeff, M., Lehtimaki, M., Hirasa, A., Huang, Y.-H., Yamauchi, H. and Karppinen, M. (2005) New Water-Containing Phase Derived from theSr3Fe2O7 Phase of the Ruddlesden-Popper Structure. Chemistry of Materials, 17, 2775-2779.

[30]   Ebbesen, S.D., Jensen, S.H., Hauch, A. and Mogensen, M.B. (2014) High Temperature Electrolysis in Alkaline Cells, Solid Proton Conducting Cells, and Solid Oxide Cells. Chemistry of Materials, 114, 10697-10734.

[31]   Goodenough, J.B. and Zhou, J.-S. (1998) Localized to Itinerant Electronic Transitions in Transition-Metal Oxides with the Perovskite Structure. Chemistry of Materials, 10, 2980-2993.

[32]   Whangbo, M.-H., Koo, H.-J., Villesuzanne, A. and Pouchard, M. (2002) Effect of Metal-Oxygen Covalent Bonding on the Competition between Jahn-Teller Distortion and Charge Disproportionation in the Perovskites of High-Spin d4 Metal Ions LaMnO3 and CaFeO3. Inorganic Chemistry, 41, 1920-1929.

[33]   Jiang, L., Saldana-Greco, D., Schick, J.T. and Rappe, A.M. (2014) Enhanced Charge Ordering Transition in Doped CaFeO3 through Steric Templating. Physical Review B, 89, Article ID: 235106.

[34]   Takashima, T., Hashimoto, K. and Nakamura, R. (2012) Mechanisms of pH-De-pendent Activity for Water Oxidation to Molecular Oxygen by MnO2 Electrocatalysts. Journal of the American Chemical Society, 134, 1519-1527.

[35]   Takashima, T., Hashimoto, K. and Nakamura, R. (2012) Inhibition of Charge Disproportionation of MnO2 Electrocatalysts for Efficient Water Oxidation under Neutral Conditions. Journal of the American Chemical Society, 134, 18153-18156.

[36]   Takashima, T., Yamaguchi, A., Irie, H., Hashimoto, K. and Nakamura, R. (2014) In Situ UV-vis Absorption Spectra of Intermediate Species for Oxygen-Evolution Reaction on the Surface of MnO2 in Neutral and Alkaline Media. Electrochemistry, 82, 325-327.

[37]   Axmann, P., Erdbrügger, C.F., Buss, D.H. and Glemser, O. (1996) Formation of FeIV and NiIV by Electrochemical and Chemical Oxidation of an Iron-Substituted Nickel (II) Hydroxide: The Direct Two-Electron Step NiII→NiIV + 2e-. Angewandte Chemie International Edition, 35, 1115-1118.

[38]   Hamen, H.C.B. and Koch, C.B. (1994) Iron (IV) in Layered Cobalt-Iron Oxide Formed by Electrochemical Oxidation. Inorganic Chemistry, 33, 5363-5365.