Back
 JWARP  Vol.9 No.5 , April 2017
Saline Intrusion Response to Sea Level Rise and Its Implications on Water and Coastal Management: A Case Study in Brazil
Abstract: Global temperature is predicted to increase in the end of the century and one of the primary consequences of this warming is the sea level rise. Considering the vulnerabilities on coastal systems and water resources, it is important to evaluate the potential effects of this rising in coastal areas, since the saline intrusion on rivers would be intensified, leading to problems related to water quality. In this context, the present work aimed to verify saline intrusion changes along an important river, S&#227o Francisco Canal, located in Rio de Janeiro State, Brazil. For this purpose, a hydrodynamic modeling was performed using SisBaHiA, considering different sea levels and tide conditions. According to the results, it was verified the intensification on saline intrusion and higher salinity values due to a sea level rise of 0.5 m. These results show that new licenses for water withdrawals must be carefully analyzed as the fluvial flow plays an important role to contain the saltwater intrusion on the studied river. Accordingly, it is recommended the evaluation of climate change effects in order to choose best strategies to reduce coastal vulnerability, and the use of this theme on environmental licensing and territorial planning, integrating water planning with coastal management.
Cite this paper: Toste, R. , Rosman, P. and de Freitas, M. (2017) Saline Intrusion Response to Sea Level Rise and Its Implications on Water and Coastal Management: A Case Study in Brazil. Journal of Water Resource and Protection, 9, 510-522. doi: 10.4236/jwarp.2017.95033.
References

[1]   IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

[2]   Church, J.A. and White, N.J. (2006) A 20th Century Acceleration in Global Sea-Level Rise. Geophysical Research Letters, 33, 4 p.
https://doi.org/10.1029/2005GL024826

[3]   Santos, R.F. and Caldeyro, V.S. (2007) Paisagens, Condicionantes e Mudanças. In: Vulnerabilidade Ambiental—Desastres Naturais ou Fenômenos Induzidos? Santos, R. F. Org., Brasília, 192 p.

[4]   Tagliani, C.R., Calliari, L.J., Tagliani, P.R. and Antiqueira, J.A. (2010) Vulnerability to Sea Level Rise of an Estuarine Island in Southern Brazil. Quaternary and Environmental Geosciences, 1, 18-24.
https://doi.org/10.5380/abequa.v2i1-2.12821

[5]   Neves, C.F. and Muehe, D. (2008) Vulnerabilidade, Impactos e Adaptação às Mudanças do Clima: A Zona Costeira. In: Parcerias Estratégicas: Mudança do Clima No Brasil: Vulnerabilidade, Impactos e Adaptação, Brasília.

[6]   Church, J.A., Clark, P.U., Cazenave, A., et al. (2013) Sea Level Change. In: Stocker, T.F., Qin, D., Plattner, G.K., et al., Eds., Climate Change 2013: The Physical Science Basis, Cambridge University Press, Cambridge.

[7]   Belém, A.L. (2007). Impactos das Mudanças Climáticas Globais No Risco de Inundaçoes em Zonas Costeiras. Jornadas Internacionales sobre Gestión del Riesgo de Inundaciones y Deslizamientos de Laderas. Brazil, 13 p.

[8]   Chang, S.W., Clement, T.P., Simpson, M.J. and Lee, K. (2011) Does Sea-Level Rise Have an Impact on Saltwater Intrusion? Advances in Water Resources, 34, 1283-1291.
https://doi.org/10.1016/j.advwatres.2011.06.006

[9]   Abd-Elhamid, H.F. and Javadi, A.A. (2011) Impact of Sea Level and Over-Pumping on Seawater Intrusion in Coastal Aquifers. Journal of Water and Climate Change, 2, 19-28.
https://doi.org/10.2166/wcc.2011.053

[10]   Niang, I., Dansokho, M., Faye, S., Gueye, K. and Ndiaye, P. (2010) Impacts of Climate Change on the Senegalese Coastal Zones: Examples of the Cap Vert Peninsula and Saloum Estuary. Global and Planetary Change, 72, 294-301.
https://doi.org/10.1016/j.gloplacha.2010.01.005

[11]   Molisani, M.M., Kjerfve, B., Silva, A.P. and Lacerda, L.D. (2006) Water Discharge and Sediment Load to Sepetiba Bay from an Anthropogenically-Altered Drainage Basin, SE Brazil. Journal of Hidrology, 331, 425-433.

[12]   Rosman, P.C.C. (2013) Referência Técnica do SisBaHia. 249 p.
http://www.sisbahia.coppe.ufrj.br/SisBAHIA_RefTec_V92.pdf

[13]   Rosman, P.C.C. (1997) Subsídios Para Modelagem de Sistemas Estuarinos. In: Rosman, P.C.C., Almeida, A.B., Eiger, S., Eds., Métodos Numéricos em Recursos Hídricos, 3rd Edition, ABRH, Porto Alegre, 238-348.

[14]   Klein, R.J.T., Nicholls, R.J., Ragoonaden, S., Capobianco, M., Aston, J. and Buckley, E.N. (2001) Technological Options for Adaptation to Climate Change in Coastal Zones. Journal of Coastal Research, 17, 591-543.

[15]   Wigley, T.M.L. (1995) Global-Mean Temperature and Sea Level Consequences of Greenhouse Gas Concentration Stabilization. Geophysical Research Letters, 22, 45-48.
https://doi.org/10.1029/94GL01011

[16]   Titus, J.G. (1991) Greenhouse Effect and Sea Level Rise: The cost of Holding Back the Sea. Coastal Management, 19, 171-204.
https://doi.org/10.1080/08920759109362138

[17]   Gusmão, P.P. (2010) Vulnerabilidade das Megacidades Brasileiras às Mudanças Climáticas: Região Metropolitana do Rio de Janeiro. In: Nobre, C. and Hogan, D.J., Eds., Projeto Megacidades, Vulnerabilidade e Mudanças Climáticas. INPE/UNI-CAMP/UFRJ, 32 p.

[18]   Bhuiyan, M.J.A.N. and Dutta, D. (2012) Assessing Impacts of Sea Level Rise on River Salinity in the Gorai River Network, Bangladesh. Estuarine, Coastal and Shelf Science, 96, 219-227.
https://doi.org/10.1016/j.ecss.2011.11.005

[19]   Ferreira Da Silva, J. and Haie, N. (2007) Optimal Locations of Groundwater Extractions in Coastal Aquifers. Water Resources Management, 21, 1299-1311.
https://doi.org/10.1007/s11269-006-9082-7

[20]   ANA (2007) Water National Agency (Agência Nacional de Aguas). Plano Estratégico de Recursos Hídricos das Bacias Hidrográficas dos Rios Guandu, da Guarda e Guandu Mirim: Relatório Gerencial. Brasília, 63 p.

 
 
Top