Back
 AiM  Vol.7 No.4 , April 2017
Characterization of Amylase from Some Aspergillus and Bacillus Species Associated with Cassava Waste Peels
Abstract: Cassava peels are generated as waste on soils during cassava processing in many tropical countries. This work set out to isolate some microorganisms associated with cassava peel degradation and characterize amylase enzymes responsible for the degradation under some physiological conditions. A total of 30 bacteria was isolated from the peels with Bacillus species occurring the most (46.5%) and Enterobacter species (13.3%) being the next. Frequencies of fungal isolations was Rhizopus sp. (35%); Aspergillus niger (25%); Aspegillus flavus (20%) and Penicillium species (20%). Bacillus cereus, Bacillus substilis Bacillus pumillus, Aspergillus niger and Apergillus flavus were selected and screened for their abilities to produce amylase. Amylase activity was highest at day 4 for B. substilis (39.4 units/ml) and A. flavus (66.1 units/ml); at day 3 for B. cereus (55.6 units/ml) and A. niger (44.6 units/ ml). While maximum amylase activity was obtained at day 6 for B. pumilus (80.2 units/ml). Optimum pH for amylases from the two fungal isolate was 6.0 (A. niger = 53.5 units/ml and A. flavus = 65.4 units/ml). While optimum pH for B.cereus (51.7 units/ ml) and B. pumilus (44.6 units/ml) was 6.5 and for B. substilis (56.1 units/ml) at pH 7.0. Amylase activities increased from 20°C to 40°C for amylase from Bacillus sp. and 20°C to 50°C for amylase from the Aspergillus sp. after which there was a decline in activities as temperature increased to 80°C. Effect of heating duration (at 70°C for 5 minutes) on the amylase showed that A. niger has the highest activity of 127 units/ml. Effect of substrate concentration on amylase activity showed that amylase form A. flavus had the highest activity of 72.2 units/ml at 0.4% substrate concentration. The implications of the findings were discussed.
Cite this paper: Ayansina, A. , Adelaja, A. and Mohammed, S. (2017) Characterization of Amylase from Some Aspergillus and Bacillus Species Associated with Cassava Waste Peels. Advances in Microbiology, 7, 280-292. doi: 10.4236/aim.2017.74023.
References

[1]   Oyeleke, S.B. and Oduwole, A.A. (2009) Production of Amylase by Bacteria Isolated from Cassava Waste Dumpsite in Minna, Niger state, Nigeria. African Journal of Microbiology Research, 3, 143-146.

[2]   Ali, S., Mahmood, S., Alan, R. and Hossain, Z. (1998) Culture Conditions for Production of Glucoamylase from Rice Bran by Aspergillus Terreus. MIRCEN Journal of Applied Microbiology and Biotechnology, 5, 525-532.
https://doi.org/10.1007/BF01741829

[3]   Pandey, A., Soccol, C.R., Nigam, P. and Soccol, V.T. (2000a) Biotechnological Potentials of Agro-Industrial Residues II: Cassava Baggase. Bioresource Technology, 74, 68-80.

[4]   Odee, D.W., Sutherland, J.M., Makatiani, E.T., Mclnroy, S.G. and Sprent, J.I. (1997) Phenotypic Characteristics and Composition of Rhizobia Associated with Woody Legumes Growing in Diverse Kenyan Conditions. Plant and Soil, 188, 65-75.
https://doi.org/10.1023/A:1004204413140

[5]   Reddy, R.R.M., Reddy, G. and Seenayya, G. (1999) Enhanced Production of Thermostable β-Amylase and Pullulanase in the Presence of Surfactants by Clostridium thermosulfurogenes SV2. Process Biochemistry, 34, 87-92.

[6]   Sani, A., Awe, F.A. and Akinyanju, J.A. (1992) Amylase Synthesis in Aspergillus flavus and Aspergillus Niger Grown on Cassava Peel. Journal of Industrial Microbiology and Biotechnology, 10, 55-59.
https://doi.org/10.1007/BF01583634

[7]   Fossi, B.T., Tavea, F. and Ndjonenkeu, R. (2005) Production and Partial Characterization of a Themostable Amylase from Ascomycetes Yeast Strain Isolated from Starchy Soils. African Journal of Biotechnology, 4, 14-18.

[8]   Amund, O.O. and Ogunsina, O.A. (1987) Amylase Producing Bacterial Strains Associated with Cassava Fermentation. Journal of Industrial Microbiology and Biotechnology, 2, 123-127.
https://doi.org/10.1007/BF01569511

[9]   Olafimihan, C.A. and Akinyanju, J.A. (1999) Thermophilic Amylase Producers from the Soil. Global Journal of Pure and Applied Sciences, 14, 816-822.

[10]   Pandey, A., Nigam, P., Soccol, C.R., Soccol, V.T., Singh, D. and Mohan, R. (2000b) Advances in Microbial Amylases. Biotechnology and Applied Biochemistry, 31, 135-152.

[11]   Gupta, R., Cigras, P., Mohapatra, H., Goswami, V.K. and Chauhan, B. (2003) Microbial-Amylase: A Biotechnological Perspective. Biotechnology Progress, 38, 1599-1616.

[12]   Oliveira, A.N., Oliveira, L.A., Andrade, J.S. and Chagas, A.F. (2007) Rhizobial Amylase Production Using Various Starchy Substances as Carbon Source. Brazilian Journal of Microbiology, 38, 208-1616.
https://doi.org/10.1590/S1517-83822007000200005

[13]   Ajayi, A.O. and Fagade, O.E. (2006) Growth Pattern and Structural Nature of Amylases Produced by Some Bacillus Species in Starchy Substrates. African Journal of Biotechnology, 5, 440-444.

[14]   Cordeiro, C.A.M., Martinas, M.L.L. and Lucaino, A. (2003) Production and Properties of Alpha Amylase from Thermophylic Bacillus Specie. Brazilian Journal of Microbiology, 33, 1-3.

[15]   Eke, O.S. and Oguntimehin, G.B. (1992) Partial Purification and Characterization of Alpha Amylase from Bacillus cereus BC. Journal of Agricultural Science and Technology, 2, 152-157.

[16]   Rohban, R., Amoozegar M.A. and Ventosa, A. (2008) Screening and Isolation of Halophilic Bacteria Producing Extracellular Hydrolyses from Howz Soltan Lake, Iran. Journal of Industrial Microbiology & Biotechnology, 36, 333-340.
https://doi.org/10.1007/s10295-008-0500-0

[17]   Nielsen, A.D., Pusey, M.L., Fulsgang, C.C. and Westh, P. (2003) A Proposed Mechanism for the Thermal Denaturation of a Recombinant Bacillus halmapalus Amylase—The Effect of Calcium Ions. Biochimica et Biophysica Acta, 1652, 52-63.

[18]   Abu, E.A., Ado, S.A. and James, D.B. (2005) Raw Starch the Grading an Amylase Production by Mixed Cultures of Aspergillus niger and Saccharomyces cerevisae Grown on Sorghum Pomace. African Journal of Biotechnology, 4, 785-790.

[19]   Harrigan, W.F and McCance, E.M. (1966) Laboratory Methods in Microbiology. Vol. 54, Academic Press, Cambridge, 970.

[20]   Brown, A.E. (2005) Benson’s Microbiological Applications. McGraw Hill, New York, 254-258.

[21]   El-Safey, E.M. and Ammar, M.S. (2002) α-Amylase Production Using Nile Hyacinth under Solid-State Fermentation (SSF) Conditions. International Conference for Development and the Environment, Assiut, 26-28 March 2002, 101-113.

[22]   Sathees, K., Kumar, R., Prabhu, D., Shankar, T., Sankaralingam, S. and Anandapandian, K.T.K. (2011) Optimization of Alkalophilic Protease Production by Pseudomonas aeruginosa Isolated from the Gut of Penaus monodon. World Journal of Fish and Marine Sciences, 3, 371-375.

[23]   Ashwini, K., Gaurav K., Karthik, L. and Bhaskara Rao, K.V. (2011) Purification and Characterization of α-Amylase from a Newly Isolated Aspergillus flavus F2Mbb. Archives of Applied Science Research, 3, 33-42.

[24]   Kirti, R.J. (2012) Comparative Study of Kinetic Parameters of Bacterial and Fungal Amylases. Journal of Bio Innovative, 3, 48-57.

[25]   Giri, N.Y., Mohan, A.R., Rao, L.V. and Rao, C.P. (2000) Immobilization of Amylase Complex in Detection of Higher Oligosaccharides on Paper. Current Science, 59, 1339-1340.

[26]   Hamilton, L.M., Kelly, T.C. and Fogarty, W.M. (1999) Purification and Properties of the Raw Starch-Degrading α-Amylase of Bacillus sp. IMD 434. Biotechnology Letters, 21, 111-115.
https://doi.org/10.1023/A:1005413816101

[27]   Ayansina, A.D.V. and Owoseni, A.A. (2010) Studies on Amylolytic Enzyme Synthesized by Aspergillus flavus Associated with Mouldy Bread. Pakistan Journal of Nutrition, 9, 434-437.
https://doi.org/10.3923/pjn.2010.434.437

[28]   Senthilkumar, P.K., Uma, C. and Saranraj, P. (2012) Amylase Production by Bacillus sp. Using Cassava as Substrate. International Journal of Pharmaceutical and Biological Archives, 3, 300-306.

[29]   Slivinski, C.T., Machado, A.V.L., Iulek, J., Ayub R.A. and De Almeida, M.M. (2011) Biochemical Characterisation of a Glucoamylase from Aspergillus niger Produced by Solid State Fermentation. Brazilian Archives of Biology and Technology, 54, 559-568.
https://doi.org/10.1590/S1516-89132011000300018

[30]   Nyamful, A. (2013) Characterization of Glucoamylase Produced by Aspergillus niger and Rhizopus sp. M.Sc. Thesis, Department of Chemical Engineering.

[31]   Anthrin, R.L., Solheim, B.A., Solheim, L., Autherinen, A.L., Ginefare, J. and Karppelin, S. (1990) A New Bacillus licheniformis Alpha Amylase Capable of Low pH Liquefaction. Starch/Starke, 43, 355-360.

[32]   Martinez, T.F., Diaz, M. and Moyano, F.F. (2002) Inhibition of Amylase Present in Ruminal Particle Associated Microoganism. Journal of the Science of Food and Agriculture, 82, 398-404.
https://doi.org/10.1002/jsfa.1047

[33]   Swamy, M.V., Sai Ram, M. and Seenayya, G. (1994) B Amylase from Clostridium thermocellum SS 8-a Thermophilic, Anaerobic, Cellulolytic Bacterium. Letters in Applied Microbiology, 18, 301-304.
https://doi.org/10.1111/j.1472-765X.1994.tb00875.x

[34]   Dutta, T., Jana, M., Pahari, P.R. and Bhattacharya, T. (2006) The Effect of Temperature, pH, and Salt on Amylase in Heliodiaptomus viduus (Gurney) (Crustacea: Copepoda: Calanoida). Turkish Journal of Zoology, 30, 187-195.

[35]   Roskoski, R. (2007) Michaelis-Menten Kinetics. Biochemical and Biophysical Research Communications, 1, 1-10.

[36]   Aderemi, F. (2010) Utilization of Graded Levels of Biodegraded Cassava Peels in Broiler Ration. Electronic Journal of Environmental, Agricultural and Food Chemistry, 9, 672-678.

[37]   Ayansina, A.D.V., Adebola, M.A. and Adeyemi, A.O. (2014) Some Microorganisms Associated with Soils Exposed to Cassava (Mannihot eduttasculatum) Peels. American Journal of Research Communication, 2, 155-162.

 
 
Top