Back
 AiM  Vol.7 No.4 , April 2017
The PafR Gene Is Required for Antifungal Activity of Strain MS82 against Mycogone perniciosa
Abstract: Bacterial strain MS82, isolated from the rhizosphere of a soybean plant, belongs to the species Pseudomonas fluorescens. The most important feature of strain MS82 is the production of antifungal activity against the mushroom pathogenic fungus Mycogone perniciosa but not against the mushroom fungus Agaricus bisporus. In this study, the mutant MS82MT19 generated with the EZ-Tn5 transposon system completely lost the antifungal activity against M. perniciosa. An open-reading frame named as PafR and predicted to code for a sensory box GGDEF/EAL domain protein, was disrupted in MS82MT19. To further confirm the function of this gene, site-directed mutagenesis with insertion of the terminatorless nptII cassette into the PafR gene was used to generate the mutant MS82SD19. As expected, there was no detectable antifungal activity of mutant MS82SD19 against M. perniciosa. These results suggest that the PafR gene plays an important role in the production of antifungal activity of P. fluorescens strain MS82.
Cite this paper: Ma, L. , Wang, X. , Deng, P. , Baird, S. , Liu, Y. , Qu, S. and Lu, S. (2017) The PafR Gene Is Required for Antifungal Activity of Strain MS82 against Mycogone perniciosa. Advances in Microbiology, 7, 217-230. doi: 10.4236/aim.2017.74018.
References

[1]   Mattila, P., Suonpaa, K. and Piironen, V. (2000) Functional Properties of Edible Mushrooms. Nutrition, 16, 694-696. https://doi.org/10.1016/s0899-9007(00)00341-5

[2]   Kouser, S., Ahmed, M. and Shah, S. (2013) Disease Status and Yield Losses Due to Wet Bubble Disease (Mycogone perniciosa) Associated with the Cultivation of White Button Mushroom at Different Mushroom Units of Kashmir Valley. The Plant Pathology Journal, 12, 104-109. https://doi.org/10.3923/ppj.2013.104.109

[3]   Zhao, X., Shi, Y., Xie, X. and Li, B. (2013) Screening and Evaluation of Induced Resistance to Brown Blotch Disease in Pleurotus spp. by Low Virulence and Avirulent Strains of Pseudomonas tolaasii. Acta Edulis Fungi, 20, 96-100.

[4]   Chang, S. (1999) World Production of Cultivated Edible and Medicinal Mushrooms in 1997 with Emphasis on Lentinus edodes (Berk.) Sing, in China. International Journal of Medicinal Mushrooms, 1, 291-300. https://doi.org/10.1615/intjmedmushr.v1.i4.10

[5]   Fletcher, J.T., Jaffe, B., Muthumeenakshi, S., Brown, A.E. and Wright, D.M. (1995) Variations in Isolates of Mycogone perniciosa and in Disease Symptoms in Agaricus bisporus. Plant Pathology, 44, 130-140. https://doi.org/10.1111/j.1365-3059.1995.tb02725.x

[6]   Fan, J., Zhang, H., Zhang, Z., Gong, P., He, W. and Zhu, Y. (2012) Integrated Control Technology of Mycogone perniciosa Magn. of Agaricus bisporus. Northern Horticulture, 6, 168-170.

[7]   Gea, F.J., Tello, J.C. and Navarro, M.J. (2010) Efficacy and Effects on Yield of Different Fungicides for Control of Wet Bubble Disease of Mushroom Caused by the mycoparasite Mycogone perniciosa. Crop Protection, 29, 1021-1025.
https://doi.org/10.1016/j.cropro.2010.06.006

[8]   Regnier, T. and Combrinck, S. (2010) In vitro and in vivo Screening of Essential Oils for the Control of Wet Bubble Disease of Agaricus bisporus. South African Journal of Botany, 76, 681-685. https://doi.org/10.1016/j.sajb.2010.07.018

[9]   Cai, S., Wen, Z., Zhang, T., Wen, J. and Xie, B. (2009) Identification of a Bacterium Inhibiting the Mycelial Growth of Mycogone perniciosa. Acta Edulis Fungi, 16, 92-94.

[10]   Yang, M.M., Mavrodi, D.V., Mavrodi, O.V., Bonsall, R.F., Parejko, J.A., Paulitz T. C., Thomashow, L.S., Yang, H.T., Weller, D.M. and Guo, J.H. (2011) Biological Control of Take-All by Fluorescent Pseudomonas spp. from Chinese Wheat Fields. Phytopathology, 101, 1481-1491. https://doi.org/10.1094/phyto-04-11-0096

[11]   Manuel, J., Selin, C., Fernando, W.G. and De, K.T. (2012) Stringent Response Mutants of Pseudomonas chlororaphis PA23 Exhibit Enhanced Antifungal Activity against Sclerotinia sclerotiorum in Vitro. Microbiology, 158, 207-216. https://doi.org/10.1099/mic.0.053082-0

[12]   Rella, A., Yang, M.W., Gruber, J. and Montagna, M.T. (2012) Pseudomonas aeruginosa Inhibits the Growth of Cryptococcus Species. Mycopathologia, 173, 451-461.
https://doi.org/10.1007/s11046-011-9494-7

[13]   Xu, J., Deng, P., Showmaker, K.C., Wang, H., Baird, S. and Lu, S. (2014) The pqqC Gene Is Essential for Antifungal Activity of Pseudomonas kilonensis JX22 against Fusarium oxysporum f. sp. Lycopersici. FEMS Microbiology Letters, 353, 98-105.
https://doi.org/10.1111/1574-6968.12411

[14]   Kilani-Feki, O., Khiari, O., Culioli, G., Ortalo-Magné, A., Zouari, N., Blache, Y. and Jaoua, S. (2010) Antifungal Activities of an Endophytic Pseudomonas fluorescens Strain Pf1TZ Harbouring Genes from Pyoluteorin and Phenazine Clusters. Biotechnology Letters, 32, 1279-1285. https://doi.org/10.1007/s10529-010-0286-9

[15]   Haas, D. and Keel, C. (2003) Regulation of Antibiotic Production in Root-Colonizing Pseudomonas spp. and Relevance for Biological Control of Plant Disease. Annual Review of Phytopathology, 41, 117-153. https://doi.org/10.1146/annurev.phyto.41.052002.095656

[16]   Ma, L., Qu, S., Wang, X., Deng P., Lin, J., Li, H., Hou, L., Jiang, N., Song, J. and Lu, S. (2016) Identification of an Antifungal Bacterium against Mushroom Pathogen Trichoderma viride and Characterization of Genes Associated with Antifungal Activity. Jiangsu Journal of Agricultural Sciences, 32, 528-533.

[17]   Newell, P.D., Yoshioka, S., Hvorecny, K.L., Monds, R.D. and O’Toole, G.A. (2011) Systematic Analysis of Diguanylate Cyclases That Promote Biofilm Formation by Pseudomonas fluorescens Pf 0-1. Journal of Bacteriology, 193, 4685-4698. https://doi.org/10.1128/JB.05483-11

[18]   West, S.E., Schweizer, H.P., Dall, C., Sample, A.K. and Runyenjanecky, L.J. (1994) Construction of Improved Escherichia-Pseudomonas Shuttle Vectors Derived from pUC18/19 and Sequence of the Region Required for Their Replication in Pseudomonas aeruginosa. Gene, 148, 81-86.

[19]   Prentki, P., Karch, F., Iida, S. and Meyer, J. (1981) The Plasmid Cloning Vector pBR325 Contains a 482 Base-Pair-Long Inverted Duplication. Gene, 14, 289-299.

[20]   Alexeyev, M.F. (1995) Three Kanamycin Resistance Gene Cassettes with Different Polylinkers. BioTechniques, 18, 52, 54, 56.

[21]   Vidaver, A.K. (1967) Synthetic and Complex Media for the Rapid Detection of Phytopathogenic Pseudomonads: Effect of the Carbon Source. Journal of Applied Microbiology, 15, 1523-1524.

[22]   Jolley, K.A. and Maiden, M.C. (2010) BIGSdb: Scalable Analysis of Bacterial Genome Variation at the Population Level. BMC Bioinformatics, 11, 595.
https://doi.org/10.1186/1471-2105-11-595

[23]   Gu, G., Smith, L., Liu, A. and Lu, S. (2011) Genetic and Biochemical Map for the Biosynthesis of Occidiofungin, an Antifungal Produced by Burkholderia contaminans Strain MS14. Applied and Environmental Microbiology, 77, 6189-6198. https://doi.org/10.1128/AEM.00377-11

[24]   Choi, K.H., Kumar, A. and Schweizer, H.P. (2006) A 10-min Method for Preparation of Highly Electrocompetent Pseudomonas aeruginosa Cells: Application for DNA Fragment Transfer between Chromosomes and Plasmid Transformation. Journal of Microbiological Methods, 64, 391-397.

[25]   Jacobs, M.A., Alwood, A., Thaipisuttikul, I., Spencer, D., Haugen, E., Ernst, S., Will, O., Kaul, R., Raymond, C., Levy, R., Liu, C.R., Guenthner, D., Bovee, D., Olson, M.V. and Manoil, C. (2003) Comprehensive Transposon Mutant Library of Pseudomonas aeruginosa. PNAS, 100, 14339-14344. https://doi.org/10.1073/pnas.2036282100

[26]   Solovyev, V., Kosarev, P., Seledsov, I. and Vorobyev, D. (2006) Automatic Annotation of Eukaryotic Genes, Pseudogenes and Promoters. Genome Biology, 7, S10, S11-S12.

[27]   Lu, S.E., Scholz-Schroeder, B.K. and Gross, D.C. (2002) Characterization of the sala, syrF and syrG Regulatory Genes Located at the Right Border of the Syringomycin Gene Cluster of Pseudomonas syringae pv. syringae. Molecular Plant-Microbe Interactions, 15, 43-52.
https://doi.org/10.1094/MPMI.2002.15.1.43

[28]   Silby, M.W., Cerdeño-Tárraga, A.M., Vernikos, G.S., Giddens, S.R., Jackson, R.W., Preston, G.M., Zhang, X., Moon, C.D., Gehrig, S.M., Godfrey, S.A.C., Knight, C.G., Malone, J.G., Robinson, Z., Spiers, A.J., Harris, S., Challis, G.L., Yaxley, A.M., Harris, D., Seeger, K., Murphy, L., Rutter, S., Squares, R., Quail, M.A., Saunders, E., Mavromatis, K., Brettin, T.S., Bentley, S.D., Hothersall, J., Stephens, E., Thomas, C.M., Parkhill, J., Levy, S.B., Rainey, P.B. and Thomson, N.R. (2009) Genomic and Genetic Analyses of Diversity and Plant Interactions of Pseudomonas fluorescens. Genome Biology, 10, R51.51-R51.16.
https://doi.org/10.1186/gb-2009-10-5-r51

[29]   Ramette, A., Frapolli, M., Saux, F.L., Gruffaz, C., Meyer, J.M., Defago, G., Sutra, L. and Moenne-Loccoz, Y. (2011) Pseudomonas protegens sp. nov., Widespread Plant-Protecting Bacteria Producing the Biocontrol Compounds 2, 4-Diacetylphloroglucinol and Pyoluteorin. Systematic and Applied Microbiology, 34, 180-188.

[30]   Varivarn, K., Champa, L.A., Silby, M.W. and Robleto, E.A. (2013) Colonization Strategies of Pseudomonas fluorescens Pf0-1: Activation of Soil-Specific Genes Important for Diverse and Specific Environments. BMC Microbiology, 13, 92. https://doi.org/10.1186/1471-2180-13-92

[31]   Holland, L.M., O’Donnell, S.T., Ryjenkov, D.A., Gomelsky, L., Slater, S.R., Fey, P.D., Gomelsky, M. and O’Gara, J.P. (2010) A Staphylococcal GGDEF Domain Protein Regulates Biofilm Formation Independently of Cyclic Dimeric GMP. Journal of Bacteriology, 190, 5178-5189. https://doi.org/10.1128/JB.00375-08

[32]   Newell, P.D., Monds, R.D. and O’Toole, G.A. (2009) LapD Is a bis-(3’,5’)-cyclic Dimeric GMP-Binding Protein That Regulates Surface Attachment by Pseudomonas fluorescens Pf0-1. PNAS, 106, 3461-3466. https://doi.org/10.1073/pnas.0808933106

[33]   Beyhan, S., Odell, L.S. and Yildiz, F.H. (2008) Identification and Characterization of Cyclic Diguanylate Signaling Systems Controlling Rugosity in Vibrio cholerae. Journal of Bacteriology, 190, 7392-7405. https://doi.org/10.1128/JB.00564-08

[34]   Simm, R., Morr, M., Kader, A., Nimtz, M. and Romling, U. (2004) GGDEF and EAL Domains Inversely Regulate Cyclic di-GMP Levels and Transition from Sessility to Motility. Molecular Microbiology, 53, 1123-1134. https://doi.org/10.1111/j.1365-2958.2004.04206.x

[35]   Chang, A.L., Tuckerman, J.R., Gonzalez, G., Mayer, R., Weinhouse, H., Volman, G., Amikam, D., Benziman, M. and Gilles-Gonzalez, M.A. (2001) Phosphodiesterase A1, a Regulator of Cellulose Synthesis in Acetobacter xylinum, Is a Heme-Based Sensor. Biochemistry 40, 3420-3426. https://doi.org/10.1021/bi0100236

[36]   Galperin, M.Y., Nikolskaya, A.N. and Koonin, E.V. (2001) Novel Domains of the Prokaryotic Two-Component Signal Transduction Systems. FEMS Microbiology Letters, 203, 11-21.
https://doi.org/10.1111/j.1574-6968.2001.tb10814.x

[37]   Ross, P., Weinhouse, H., Aloni, Y., Michaeli, D., Weinberger-ohana, P., Mayer, R., Braun, S., De Vroom, E., Van Der Marel, G.A., Van Boom, J.H. and Benziman, M. (1987) Regulation of Cellulose Synthesis in Acetobacter xylinum by Cyclic Diguanylic Acid. Nature, 325, 279-281.
https://doi.org/10.1038/325279a0

[38]   Amikam, D. and Benziman, M. (1989) Cyclic Diguanylic Acid and Cellulose Synthesis in Agrobacterium tumefaciens. Journal of Bacteriology, 171, 6649-6655.
https://doi.org/10.1128/jb.171.12.6649-6655.1989

[39]   Li, W., Rokni-Zadeh, H., De Vleeschouwer, M., Ghequire, M.G., Sinneve, D., Xie, G., Rozenski, J., Madder, A., Martins, J.C. and De Mot, R. (2013) The Antimicrobial Compound Xantholysin Defines a New Group of Pseudomonas Cyclic Lipopeptides. PloS ONE, 8, e62946.
https://doi.org/10.1371/journal.pone.0062946

[40]   Engl, C., Waite, C.J., McKenna, J.F., Bennett, M.H., Hamann, T. and Buck, M. (2014) Chp8, a Diguanylate Cyclase from Pseudomonas syringae pv. tomato DC3000, Suppresses the Pathogen-Associated Molecular Pattern Flagellin, Increases Extracellular Polysaccharides and Promotes Plant Immune Evasion. MBio, 5, e01168-14. https://doi.org/10.1128/mBio.01168-14

[41]   Chen, K.C., Ravichandran, A., Guerrero, A., Deng, P., Baird S., Smith, L. and Lu, S. (2013) The Burkholderia contaminans MS14 ocfC Gene Encodes a Xylosyltransferase for Production of the Antifungal Occidiofungin. Applied and Environmental Microbiology, 79, 2899-2905.
https://doi.org/10.1128/AEM.00263-13

[42]   Luu, R.A., Schneider, B.J., Ho, C.C., Nesteryuk, V., Ngwesse, S.E., Liu, X., Parales, J.V., Ditty, J.L. and Parales, R.E. (2013) Taxis of Pseudomonas putida F1 toward Phenylacetic Acid Is Mediated by the Energy Taxis Receptor Aer2. Applied and Environmental Microbiology, 79, 2416-2423. https://doi.org/10.1128/AEM.03895-12

[43]   Horbal, L., Fedorenko, V., Bechthold, A. and Luzhetskyy, A. (2013) A Transposon-Based Strategy to Identify the Regulatory Gene Network Responsible for Landomycin E Biosynthesis. FEMS Microbiology Letters, 342, 138-146. https://doi.org/10.1111/1574-6968.12117

 
 
Top