Back
 JAMP  Vol.5 No.4 , April 2017
Nonlinear Super Integrable Couplings of Super Yang Hierarchy and Its Super Hamiltonian Structures
Abstract:
Nonlinear super integrable couplings of the super Yang hierarchy based upon an enlarged matrix Lie super algebra were constructed. Then its super Hamiltonian structures were established by using super trace identity. As its reduction, nonlinear integrable couplings of Yang hierarchy were obtained.
Cite this paper: Tao, S. and Ma, Y. (2017) Nonlinear Super Integrable Couplings of Super Yang Hierarchy and Its Super Hamiltonian Structures. Journal of Applied Mathematics and Physics, 5, 792-800. doi: 10.4236/jamp.2017.54068.
References

[1]   Kupershmidt, B.A. (1985) Odd and Even Poisson Brackets In Dynamical Systems. Letters in Mathematical Physics, 9, 323-330. https://doi.org/10.1007/BF00397758

[2]   Li, Y.S. and Zhang, L.N. (1988) A Note on the Super AKNS Equations. Journal of Physics A: Mathematical and General, 21, 1549-1552. https://doi.org/10.1088/0305-4470/21/7/017

[3]   Tu, M.H. and Shaw, J.C. (1999) Hamiltonian Structures of Generalized Manin-Ra- dul Super-KdV and Constrained Super KP Hierarchies. Journal of Mathematical Physics, 40, 3021-3034. https://doi.org/10.1063/1.532741

[4]   Liu, Q.P. and Hu, X.B. (2005) Bilinearization of N = 1 Supersymmetric Korteweg de Vries Equation Revisited. Journal of Physics A: Mathematical and General, 38, 6371- 6378. https://doi.org/10.1088/0305-4470/38/28/009

[5]   Aratyn, H., Nissimov, E. and Pacheva, S. (1999) Supersymmetric Kadomtsev-Pet- viashvili Hierarchy: “Ghost” Symmetry Structure, Reductions, and Darboux- Bäcklund Solutions. Journal of Mathematical Physics, 40, 2922-2932. https://doi.org/10.1063/1.532736

[6]   Morosi, C. and Pizzocchero, L. (1993) On the bi Hamiltonian Structure of the Supersymmetric KdV Hierarchies. A Lie Superalgebraic Approach. Communications in Mathematical Physics, 158, 267-288. https://doi.org/10.1007/BF02108075

[7]   Hu, X.B. (1997) An Approach to Generate Superextensions of Integrable Systems. Journal of Physics A: Mathematical and General, 30, 619-632. https://doi.org/10.1088/0305-4470/30/2/023

[8]   He, J.S., Yu, J., Zhou, R.G. and Cheng, Y. (2008) Binary Nonlinearization of the Super AKNS System. Modern Physics Letters B, 22, 275-288. https://doi.org/10.1142/S0217984908014778

[9]   Liu, Q.P., Popowicz, Z. and Tian, K. (2010) Supersymmetric Reciprocal Transformation and Its Applications. Journal of Mathematical Physics, 51, 093511. https://doi.org/10.1063/1.3481568

[10]   Guo, F.K. and Zhang, Y.F. (2005) The Quadratic-Form Identity for Constructing the Hamiltonian Structure of Integrable Systems. Journal of Physics A: Mathematical and General, 38, 8537-8548. https://doi.org/10.1088/0305-4470/38/40/005

[11]   Zhang, Y.F. and Tam, H.W. (2010) Four Lie Algebras Associated with R^6 and Their Applications. Journal of Mathematical Physics, 51, 093514. https://doi.org/10.1063/1.3489126

[12]   Ma, W.X. (2011) Nonlinear Continuous Integrable Hamiltonian Couplings. Applied Mathematics and Computation, 217, 7238-7244. https://doi.org/10.1016/j.amc.2011.02.014

[13]   Zhang, Y.F. (2011) Lie Algebras for Constructing Nonlinear Integrable Couplings. Communications in Theoretical Physics, 56, 805-812. https://doi.org/10.1088/0253-6102/56/5/03

[14]   You, F.C. (2011) Nonlinear Super Integrable Hamiltonian Couplings. Journal of Mathematical Physics, 52, 123510. https://doi.org/10.1063/1.3669484

[15]   Tao, S.X. and Xia, T.C. (2011) Two Super-Integrable Hierarchies and Their Super- Hamiltonian Structures. Communications in Nonlinear Science and Numerical Simulation, 16, 127-132. https://doi.org/10.1016/j.cnsns.2010.04.009.

 
 
Top