Back
 EPE  Vol.9 No.4 B , April 2017
Optimization of Minimum Power Output for Combined Heat and Power Units Considering Peak Load Regulation Ability
Abstract:
Northern China has rich wind power and photovoltaic renewable resources. Combined Heat and Power (CHP) Units to meet the load demand and limit its peaking capacity in winter, to a certain extent, it results in structural problems of wind-solar power and thermoelectric. To solve these problems, this paper proposes a plurality of units together to ensure supply of heat load on the premise, by building a thermoelectric power peaking considering thermal load unit group dynamic scheduling model, to achieve the potential of different thermoelectric properties peaking units of the excavation. Simulation examples show, if the unit group exists obvious relationship thermoelectric individual differences, the thermal load dynamic scheduling can be more significantly improved overall performance peaking unit group, effectively increase clean energy consumptive.
Cite this paper: Liu, C. , Men, D. , Xu, D. , Ding, Q. , Huang, G. , Dai, S. and Zhou, J. (2017) Optimization of Minimum Power Output for Combined Heat and Power Units Considering Peak Load Regulation Ability. Energy and Power Engineering, 9, 452-463. doi: 10.4236/epe.2017.94B051.
References

[1]   Meng, A.B., Mei, P. and Lu, H.M.(2016) Crisscross Optimization Algorithm for Combined Heat and Power Economic Dispatch. Power System Protection and Control, 44,90-97.

[2]   Zhang, C., Hu, L.X. and Hu, J.(2013) Research on the Impact of The Proportion of Thermal Power Generating Units and Heat Load on The Wind Power Accommodation Rate.Power System Protection and Control, 41,120-125.

[3]   Chen, J.,Yang, X.,Zhu, L.,et al. (2013)Genetic Algorithm Based Economic Operation Optimization of A Combined Heat And Power Microgrid.Power System Protection and Control, 41, 7-15.

[4]   Gu, Z.P., Kang, C.Q., Chen, X.Y.,et al.(2015) Operation Optimization of Integrated Power and Heat Energy Systems and the Benefit onWind Power Accommodation Considering Heating Network Constraints.Proceedings of the CSEE, 35, 3596-3604.

[5]   Shan, H.H. and Pei, C.L. (2013) A Harmony-Genetic Based Heuristic Approach toward Economic Dispatching Combined Heat and Power.Electrical Power and Energy Systems,53, 482-487.https://doi.org/10.1016/j.ijepes.2013.05.027

[6]   Chen, J.H.,Wu, W.C.,Zhang, B.M.,et al.(2012) A Rolling Generation Dispatch Strategy for Co-generation Units Accommodating Large-scale Wind Power Integration.Automation of Electric Power Systems,6, 21-27.

[7]   Pei, W.D., Wei,S. Zi, Q.,et al.(2014) Energy Coordination and Optimization of Hybrid Microgrid Based on Renewable Energy and CHP Supply.Automation of Electric Power Systems,38, 9-15.

[8]   Long, H.Y., Ma, J.W., Wu, K.,et al.(2011) Energy Conservation Dispatch of Power Grid With Mass CHPand Wind Turbines.Electric Power Automation Equipment, 31, 18-22.

[9]   Gu, W., Wu, Z. and Wang, R. (2012) Multi-objective Optimization of Combined Heat and Power Microgrid Considering Pollutant Emission. Automation of Electric Power Systems,36,177-185.

[10]   Wang, R., Gu, W. and Wu, Z.(2011) Economic and Optimal Operation of a Combined Heat and Power Microgrid with Renewable Energy Resources.Automation of Electric Power Systems,35, 22-27.

[11]   Wu, L., Yuan, Q. and Liu, X.(2012) Research on the Scheme of Optimal LoadDistribution for CHP Units. Proceedings of the CSEE, 2012,32, 6-12.

[12]   LV, Q., Chen, T.Y.,Wang, H.X., et al.(2014) Analysis on Peak-load Regulation Ability of CHP Unit with Heat Accumulator.Automation of Electric Power Systems, 38, 34-41.

 
 
Top