Back
 IJCM  Vol.8 No.3 , March 2017
A Study of Cardiac Profile in Patients with Snake Envenomation and Its Complications
Abstract: Background: Snake bite is a common and frequently devastating environmental and occupational disease, especially in rural areas of tropical developing countries. The present study was undertaken to evaluate the effect on cardiac profile in patients with snake envenomation and its complications. Methods: A total of 200 patients with snake envenomation were enrolled in this study excluding patients having history of any cardiovascular disease, renal disease, coagulopathy, liver disease, neuromuscular disease and those cases who bitten by non-poisonous snakes. All patients underwent physical examination, laboratory, Electrocardiogram (ECG), X-ray of chest and echocardiogram investigations. Results: A total of 200 cases had envenomation having 116 (58%) of male subjects. Most common local signs were edema 187 (93.5%), tenderness 141 (70.5%), skin necrosis 81 (40.5%) and blistering 12 (6%). Severity of local envenomation was graded into mild 66 (33%), moderate 120 (60%) and severe 14 (7%) cases. Systemic manifestations were present in 83 patients of venomous bites. It includes that majorly 53 (26.5%) cases had vomiting, 44 (22%) cases had abdominal pain and 9 (4.5%) cases of hypotension. ECG manifestation showed 27 (13.5%), 6 (3%) and 1 (0.5%) patients had sinus tachycardia, sinus bradycardia and ventricular tachycardia respectively. While, 9 (4.5%) cases had T inversion alone in precordial leads. Mortality (3%) was observed in intracranial bleed, neurotoxicity and capillary leak syndrome. However, cardiovascular involvement was not responsible for mortality in any cases. Conclusion: In conclusion, ventricular tachycardia is one of the manifestations of snake envenomation. Moreover, sinus tachycardia is common cardiovascular sign which may not be due to cardiac causes. Mortality results conclude that, cardiovascular involvement could not be responsible for mortality in snake envenomation.
Cite this paper: Ramakrishna C.D. and Kanattu, P.S. (2017) A Study of Cardiac Profile in Patients with Snake Envenomation and Its Complications. International Journal of Clinical Medicine, 8, 167-177. doi: 10.4236/ijcm.2017.83017.
References

[1]   Kasturiratne, A., Wickremasinghe, A.R., de Silva, N., Gunawardena, N.K., Pathmeswaran, A., Premaratna, R., Savioli, L., Lalloo, D.G. and de Silva, H.J. (2008) The Global Burden of Snakebite: A Literature Analysis and Modelling Based on Regional Estimates of Envenoming and Deaths. PLoS medicine, 5, e218.
https://doi.org/10.1371/journal.pmed.0050218

[2]   Kang, S., Moon, J. and Chun, B. (2016) Does the Traditional Snakebite Severity Score Correctly Classify Envenomated Patients? Clinical and experimental emergency medicine, 3, 34-40.

[3]   Nayak, K.C., Jain, A.K., Sharda, D.P. and Mishra, S.N. (1990) Profile of Cardiac Complications of Snake Bite. Indian Heart Journal, 42, 185-188.

[4]   Cherifi, F. and Laraba-Djebari, F. (2013) Isolated Biomolecules of Pharmacological Interest in Hemostasis from Cerastes Cerastes Venom. The Journal of Venomous Animals and Toxins Including Tropical Diseases, 19, 11.
https://doi.org/10.1186/1678-9199-19-11

[5]   Reid, H.A. (1975) Bites and Stings in Travellers. Postgraduate Medical Journal, 51, 830-837.
https://doi.org/10.1136/pgmj.51.602.830

[6]   Brown, R. and Dewar, H.A. (1965) Heart Damage following Adder Bite in England. British Heart Journal, 27, 144-147.
https://doi.org/10.1136/hrt.27.1.144

[7]   Blondheim, D.S., Plich, M., Berman, M., Khair, G., Tzvig, L., Ezri, J. and Marmor, A.T. (1996) Acute Myocardial Infarction Complicating Viper Bite. The American Journal of Cardiology, 78, 492-493.
https://doi.org/10.1016/S0002-9149(96)00347-5

[8]   Moore, R.S. (1988) Second-Degree Heart Block Associated with Envenomation by Vipera Berus. Archives of Emergency Medicine, 5, 116-118.
https://doi.org/10.1136/emj.5.2.116

[9]   Maduwage, K. and Isbister, G.K. (2014) Current Treatment for Venom-Induced Consumption Coagulopathy Resulting from Snakebite. PLoS Neglected Tropical Diseases, 8, e3220.
https://doi.org/10.1371/journal.pntd.0003220

[10]   White, J. (2005) Snake Venoms and Coagulopathy. Toxicon: Official Journal of the International Society on Toxinology, 45, 951-967.

[11]   Klauser, R.J., Robinson, C.J., Marinkovic, D.V. and Erdös, E.G. (1979) Inhibition of Human Peptidyl Dipeptidase (Angiotensin I Converting Enzyme: Kininase II) by Human Serum Albumin and Its Fragments. Hypertension, 1, 281-286.
https://doi.org/10.1161/01.HYP.1.3.281

[12]   Saini, R.K., Sharma, S., Singh, S. and Pathania, N.S. (1984) Snake Bite Poisoning: A Preliminary Report. The Journal of the Association of Physicians of India, 32, 195-197.

[13]   Maheshwari, M. and Mittal, S.R. (2004) Acute Myocardial Infarction Complicating Snake Bite. The Journal of the Association of Physicians of India, 52, 63-64.

[14]   Banerjee, R. and Siddiqui, Z. (1978) Epidemiological Study of Snake-Bite in India. Toxins: Animal, Plant and Microbial. 1st Edition, 439-446.

[15]   Thewjitcharoen, Y. and Poopitaya, S. (2005) Ventricular Tachycardia, a Rare Manifestation of Russell’s Viper Bite: Case Report. Journal of the Medical Association of Thailand = Chotmaihet thangphaet, 88, 1931-1933.

[16]   Ahmed, S.M., Ahmed, M., Nadeem, A., Mahajan, J., Choudhary, A. and Pal, J. (2008) Emergency Treatment of a Snake Bite: Pearls from Literature. Journal of Emergencies, Trauma, and Shock, 1, 97-105.
https://doi.org/10.4103/0974-2700.43190

[17]   Chadha, J.S., Ashby, D.W. and Brown, J.O. (1968) Abnormal Electrodiogram after Adder Bite. British Heart Journal, 30, 138-140.
https://doi.org/10.1136/hrt.30.1.138

[18]   Bhat, R.N. (1974) Viperine Snake Bite Poisoning in Jammu. Journal of the Indian Medical Association, 63, 383-392.

 
 
Top