JBM  Vol.5 No.3 , March 2017
Optimization of Headspace Solid-Phase Microextraction Conditions for the Identification of Volatiles Compounds from the Whole Fruit of Lemon, Lime, Mandarin and Orange
An optimum method has been developed for extracting volatile organic compounds (VOCs) which contribute to the aroma of different species of citrus fruit (orange, lemon, lime, and mandarin). Headspace solid phase microextraction (HS-SPME) combined with gas chromatography (GC) coupled with flame ionization detection (FID) is used as a very simple, efficient and non-destructive extraction method. A three phase 50/30 μm PDV/DVB/CAR fibre was used for the extraction process. The optimal sealing time for volatiles reaching equilibrium from whole fruit in the headspace of the chamber was 20, 16, 8 and 16 hours for lemon, lime, mandarin, and orange respectively. Optimum fibre exposure times for whole fruit were 2, 4, 2 and 2 hours for lemon, lime, mandarin, and orange respectively. Three chamber volumes (500, 1000 and 2000 ml) were evaluated for the collection of VOCs with the 500 ml chamber being selected. The 500ml chamber produced the highest quality peak areas and quantity of extracted volatiles. As a result of fruit respiration, the percentage of oxygen (O2) of all citrus fruit species in 500 ml chamber decreased from 21.8% to 18.8% in the 20 hours sealing time, while carbon dioxide (CO2) contents increased to 2.9% also in the 20 hours sealing time. The results of this study showed the feasibility of this technique for identifying VOCs from four of the citrus fruit species and its potential as a routine method for physiological studies on citrus fruit or on other fruit species.
Cite this paper: Mohammed, K. , Agarwal, M. , Newman, J. , Ren, Y. (2017) Optimization of Headspace Solid-Phase Microextraction Conditions for the Identification of Volatiles Compounds from the Whole Fruit of Lemon, Lime, Mandarin and Orange. Journal of Biosciences and Medicines, 5, 176-186. doi: 10.4236/jbm.2017.53019.

[1]   Liu, Y.Q., Heying, E. and Tanumihardjo, S.A. (2012) History, Global Distribution, and Nutritional Importance of Citrus Fruits. Comprehensive Reviews in Food Science and Food Safety, 11, 530-545.

[2]   Ladanyia, M. and Ladaniya, M. (2010) Citrus Fruit: Biology, Technology and Evaluation. Academic Press.

[3]   Murray Darling Basin Authority (2010) Guide to the Proposed Basin Plan. Murray- Darling Basin Authority, Canberra.

[4]   Manner, H.I., Buker, R.S., Smith, V.E., Ward, D. and Elevitch, C.R. (2006) Citrus (Citrus) and Fortunella (Kumquat). Species Profile for Pacific Island Agroforestry, 2, 1-35.

[5]   Ortiz, J.M. (2002) Botany. In: Dugo, G. and Di Giacomo, A., Eds., Citrus: The Genus Citrus, Taylor and Francis, New York, 16-35.

[6]   Tan, Q., Ai, M., and Minh, N. (2011) Volatile Constituents of Essential Oil from Citrus sinensis Grown in Tine Giant Province, Vietnam. Asian Journal of Food and Agro Industry, 4(, 183-186.

[7]   Fares, S., Park, J.H., Gentner, D.R., Weber, R., Ormeño, E., Karlik, J. and Goldstein, A.H. (2012) Seasonal Cycles of Biogenic Volatile Organic Compound Fluxes and Concentrations in a California Citrus Orchard. Atmospheric Chemistry and Physics, 12, 9865.

[8]   Cavalli, J.F., Fernandez, X., Liz-zani-Cuvelier, L. and Loiseau, A.M. (2003) Comparison of Static Headspace, Headspace Solid Phase Microextraction, Headspace Sorptive Extraction, and Direct Thermal Desorption Techniques on Chemical Composition of French Olive Oils. Journal of Agricultural and Food Chemistry, 51, 7709-7716.

[9]   González-Mas, M.C., García-Riaño, L.M., Alfaro, C., Rambla, J.L., Padilla, A.I. and Gutierrez, A. (2009) Headspace-Based Techniques to Identify the Principal Volatile Compounds in Red Grape Cultivars. International Journal of Food Science & Technology, 44, 510-518.

[10]   Jia, M., Zhang, Q.H. and Min, D.B. (1998) Optimization of Solid-Phase Microextraction Analysis for Headspace Flavor Compounds of Orange Juice. Journal of Agricultural and Food Chemistry, 46, 2744-2747.

[11]   Choi, H.S. and Min, K.C. (2004) Headspace-SPME Analysis of Citrus Hybrid, Hallabong. Food Science and Biotechnology, 13, 126-129.

[12]   Atti-Santos, A.C., Rossato, M., Serafini, L.A., Cassel, E. and Moyna, P. (2005) Extraction of Essential Oils from Lime (Citrus latifolia Tanaka) by Hydrodistillation and Supercritical Carbon Dioxide. Brazilian Archives of Biology and Technology, 48, 155-160.

[13]   Sikdar, D.C., Menon, R., Duseja, K., Kumar, P. and Swami, P. (2016) Extraction of Citrus Oil from Orange (Citrus sinensis) Peels by Steam Distillation and Its Characterizations. International Journal of Technical Research and Applications, 4, 341-346.

[14]   Automatik, W. and Minyak, A.K.H. (2013) Extraction of Citrus hystrix DC (Kaffir Lime) Essential Oil Using Automated Steam Distillation Process: Analysis of Volatile Compounds. Malaysian Journal of Analytical Sciences, 17, 359-369.

[15]   Sparinska, A. and Rostoks, N. (2015) Volatile Organic Compounds of Hybrid Rugosa Roses in Latvia. In Proceedings of the Latvian Academy of Sciences. Section B. Nat Exact Appl Sci., 69, 57-61.

[16]   Najafian, S. and Rowshan, V. (2012) Comparative of HS-SPME and HD Techniques in Citrus aurantium L. Int J Med Arom Plants, 2, 488-494.

[17]   Bicchi, C., Drigo, S. and Rubiolo, P. (2000) In-fluence of Fibre Coating in Headspace Solid-phase Microextraction Gas Chromatographic Analysis of Aromatic and Medicinal Plants. Journal of Chromatography A, 892, 469-485.

[18]   Dorea, H.S., Gaujac, A. and Navickien, S. (2008) Solid-Phase Microextraction: Thermodynamic and Kinetic Aspects. Scientia Plena, 4, 1-7.

[19]   Jelen, H.H., Majcher, M. and Dziadas, M. (2012) Microextrac-tion Techniques in the Analysis of Food Flavor Compounds: A Review. Analytica Chimica Acta, 738, 13-26.

[20]   Nongonierma, A., Cayot, P., Quere, J.L., Springett, M. and Voilley, A. (2006) Mechanisms of Extraction of Aroma Compounds From Foods, Using Adsorbents. Effect of Various Parameters. Food Reviews International, 22, 51-94.

[21]   Chen, Z. X. and Lin, L. (2004) Study on Coumarin Compounds from Exocarpium Citri Grandis. Journal of Chinese Medicinal Ma-terials, 27, 577-578.

[22]   Bourgou, S., Rahali, F.Z., Ourghemmi, I. and Saïdani Tounsi, M. (2012) Changes of Peel Essential Oil Composition of Four Tunisian Citrus during Fruit Maturation. The Scientific World Journal.

[23]   Paliyath, G., Pessoa, F.L., Sidhu, J.S., Sinha, N. and Peggy Stanfield, R.D. (2010) Handbook of Fruit and Vegetable Flavors. In: Hui, Y.H., Chen, F. and Nollet, L.M., Eds., John Wiley and Sons.

[24]   Sanz, C.A.R.L.O.S., Olias, J.M. and Perez, A.G. (1996) Aroma Biochemistry of Fruits and Vegetables. Proceed-ings-Phytochemical Society of Europe, 41, 125-156.

[25]   Almenar, E., Del-Valle, V., Hernández-Muñoz, P., Lagarón, J.M., Catalá, R. and Gavara, R. (2007) Equilibrium Modi-fied Atmosphere Packaging of Wild Strawberries. Journal of the Science of Food and Ag-riculture, 87, 1931-1939.

[26]   Both, V., Brackmann, A., Thewes, F.R., Ferreira, D.F. and Wagner, R. (2014) Effect of Storage under Extremely Low Oxygen on the Volatile Composition of “Royal Gala” Apples. Food Chemistry, 156, 50-57.

[27]   Barker, J. (1928) The Effect of Carbon Dioxide on Oranges. Gt. Brit. Dept. Sci. Ind. Research Rept. Food Invest. Board, 33.

[28]   Shaw, P.E. (1991) Fruits II. In: Maarse, H., Ed., Volatile Compounds in Foods and Beverages, Marcel Dekker, New York, NY, USA, 305-327.

[29]   Garruti, D.S., Cor-denunsi, B.R. and Lajolo, F.M. (2013) Isolation of Volatiles Compounds in Banana by HS-SPME: Optimization for the Whole Fruit and Pulp. International Journal of Bioscience, Biochemistry and Bioinformatics, 3, 110.

[30]   Zhang, C., Qi, M., Shao, Q., Zhou, S. and Fu, R. (2007) Analysis of the Volatile Compounds in Ligusticum chuanxiong Hort. Using HS-SPME–GC-MS. Journal of Pharmaceutical and Biomedical Analysis, 44, 464-470.

[31]   Nardini, G.S., Merib, J.O., Dias, A.N., Dutra, J.N., Silveira, C.D., Budziak, D. and Carasek, E. (2013) Determination of Volatile Profile of Citrus Fruit by HS-SPME/GC-MS with Oxidized NiTi Fibers Using Two Tem-peratures in the Same Extraction Procedure. Microchemical Journal, 109, 128-133.

[32]   Lu, P.F., Qiao, H.L., Xu, Z.C., Cheng, J., Zong, S.X. and Luo, Y.Q. (2014) Comparative Analysis of Peach and Pear Fruit Volatiles Attractive to the Oriental Fruit Moth, Cydia molesta. Journal of Plant Interactions, 9, 388-395.