Back
 OJFD  Vol.7 No.1 , March 2017
Numerical Study of 2-D Natural Convection in a Square Porous Cavity: Effect of Three Mode Heating
Abstract: The work we present in this paper is a continuation of a series of studies on the numerical study of natural convection in a square porous cavity saturated by a Newtonian fluid. The left vertical wall is subjected to a temperature varying sinusoidally in time while the right vertical wall is either at a constant temperature, or varying sinusoidally in time. The upper and lower horizontal walls are thermally adiabatic. Darcy model is used, it is also assumed the fluid studied is incompressible and obeys the Boussinesq approximation. The focus is on the effect of the modulation frequency (10≤ ω≤100) on the structure of the flow and transfer thermal. The results show that the extremal stream functions (Ψmax et Ψmin), the average Nusselt number at the hot (Th) and cold (Tc) walls respectively Nuh and Nuc are periodic in the range of parameters considered in this study. In comparison with the constant heating conditions, it is found that the variable heating causes the appearance of secondary flow, whose amplification depends on the frequency of modulation of the imposed temperature but also of the heating mode. The results are shown in terms of streamlines and isotherms during a flow cycle.
Cite this paper: Malomar, G. , Mbow, C. , Tall, P. , Gueye, A. , Traore, V. and Beye, A. (2017) Numerical Study of 2-D Natural Convection in a Square Porous Cavity: Effect of Three Mode Heating. Open Journal of Fluid Dynamics, 7, 89-104. doi: 10.4236/ojfd.2017.71007.
References

[1]   Alves, T.A. and Altemani, C.A.C. (2012) An Invariant Descriptor for Heaters Temperature Prediction in Conjugate Cooling. International Journal of Thermal Sciences, 58, 92-101.
https://doi.org/10.1016/j.ijthermalsci.2012.03.007

[2]   Kuznetsov, G.V. and Sheremet, M.A. (2008) New Approach to the Mathematical Modeling of Thermal Regimes for Electronic Equipment. Russian Microelectronics, 37, 131-138.
https://doi.org/10.1134/S1063739708020078

[3]   Sheremet, M.A. and Pop, I. (2014) Natural Convection in a Square Porous Cavity with Sinusoidal Temperature Distributions on Both Side Walls Filled with a Nano-fluid: Buongiorno’s Mathematical Model. Transport in Porous Media, 105, 411-429.
https://doi.org/10.1007/s11242-014-0375-7

[4]   Bagchi, A. and Kulacki, F.A. (2013) Natural Convection in Superposed Fluid-Porous Layers. Springer-Verlag, New York, 80.

[5]   Nield, D.A. and Bejan, A. (2006) Convection in Porous Media. 3rd Edition, Springer-Verlag, New York, 640.

[6]   Pop, I. and Ingham, D.B. (2001) Convective Heat Transfer: Mathematical and Computational Modelling of Viscous Fluids and Porous Media. Elsevier, Amsterdam, 668.

[7]   Vafai, K. (2005) Handbook of Porous Media. 2nd Edition, CRC Press, New York, 784.

[8]   Ingham, D.B. and Pop, I. (2005) Transport Phenomena in Porous Media III. Elsevier, Oxford, 450.

[9]   Baytas, A.C. and Pop, I. (2002) Free Convection in a Square Porous Cavity Using a Thermal Nonequilibrium Model. International Journal of Thermal Sciences, 41, 861-870.
https://doi.org/10.1016/S1290-0729(02)01379-0

[10]   Schaladow, S.G., Patterson, J.C. and Street, R.L. (1989) Transient Flow in a Side-Heated Cavity at High Rayleigh Number: A Numerical Study. Journal of Fluid Mechanics, 200, 121-148. https://doi.org/10.1017/S0022112089000595

[11]   Kazmierczak, M. and Chinoda, Z. (1992) Buoyancy-Driven Flow in an Enclosure with Time Periodic Boundary Conditions. International Journal of Heat and Mass Transfer, 35, 1507-1518.
https://doi.org/10.1016/0017-9310(92)90040-Y

[12]   Lage, J.L. and Bejan, A. (1993) The Resonance of Natural Convection in an Enclosure Heated Periodically from the Side. International Journal of Heat and Mass Transfer, 36, 2027-2038.
https://doi.org/10.1016/S0017-9310(05)80134-6

[13]   Lage, J.L., Junqueira, S.L.M., De Lai, F.C. and Franco, A.T. (2016) Aspect Ratio Effect on the Prediction of Boundary Layer Interference in Steady Natural Convection inside Heterogeneous Enclosures. International Journal of Heat and Mass Transfer, 92, 940-947.
https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.062

[14]   Seyf, H.R. and Rassoulinejad-Mousavi, S.M. (2011) An Analytical Study for Fluid Flow in Porous Media Imbedded inside a Channel with Moving or Stationary Walls Subjected to Injection/Suction. Journal of Fluids Engineering, 133, 9.

[15]   Rassoulinejad-Mousavi, S.M. and Yaghoobi, H. (2014) Effect of Non-Linear Drag Term on Viscous Dissipation in a Fluid Saturated Porous Medium Channel with Various Boundary Conditions at Walls. Arabian Journal for Science and Engineering, 39, 1231-1240.
https://doi.org/10.1007/s13369-013-0676-0

[16]   Abourida, B., Hasnaoui, M. and Douamna, S. (1998) Natural Convection in a Square Cavity with Vertical Boundaries Submitted to Periodic Temperatures. Revue Générale de Thermique, 37, 788-800. https://doi.org/10.1016/S0035-3159(98)80005-6

[17]   Saeid, N.H. (2005) Natural Convection in a Square Porous Cavity with an Oscillating Wall Temperature. The Arabian Journal for Science and Engineering, 31, 35-46.

[18]   Malomar, G.E.B., Gueye, A., Mbow, C., Traore, V.B. and Beye, A.C. (2016) Numerical Study of Natural Convection in a Square Porous Cavity Thermally Modulated on Both Side Walls. American Journal of Engineering and Applied Sciences, 9, 591-598.
https://doi.org/10.3844/ajeassp.2016.591.598

[19]   Walker, K.L. and Homsy, G.M. (1978) Convection in a Porous Cavity. Journal of Fluid Mechanics, 87, 449-474. https://doi.org/10.1017/S0022112078001718

[20]   Bejan, A. (1979) On the Boundary Layer Regime in a Vertical Enclosure Filled with a Porous Medium. Letters in Heat and Mass Transfer, 6, 93-102.
https://doi.org/10.1016/0094-4548(79)90001-8

[21]   Beckermann, C., Viskanta, R. and Ramadhyani, S. (1986) A Numerical Study of Non-Darcian Natural Convection in a Vertical Enclosure Filled with a Porous Medium. Numerical Heat Transfer Applications, 10, 557-570.

[22]   Moya, S.L., Ramos, E. and Sen, M. (1987) Numerical Study of Natural Convection in a Tilted Rectangular Porous Material. International Journal of Heat and Mass Transfer, 30, 741-756.
https://doi.org/10.1016/0017-9310(87)90204-3

[23]   Manole, D.M. and Lage, J.L. (1992) Numerical Benchmark Results for Natural Convection in a Porous Medium Cavity. Heat and Mass Transfer in Porous Media, Anaheim, 8-13 November 1992, 55-60.

 
 
Top