IJOC  Vol.1 No.3 , September 2011
Study on the Effect of Carboxyl Terminated Butadiene Acrylonitrile (CTBN) Copolymer Concentration on the Decomposition Kinetics Parameters of Blends of Glycidyl Epoxy and Non-Glycidyl Epoxy Resin
ABSTRACT
The degradation of the epoxy system was studied for the prepared six blend samples with the incorporation of 0 wt% - 25 wt% carboxyl terminated butadiene acrylonitrile (CTBN) copolymer, on a dynamic basis using Thermo gravimetric analysis (TGA) technique under a nitrogen atmosphere. The blends were prepared by physical mixing and were cured with diamine. The degradation of each sample followed second-order degradation kinetics, which was calculated by Coats-Redfern equation using best-fit analysis. This was further confirmed by linear regression analysis. The validity of data was checked by t-test statistical analysis. From this value of reaction order, activation energy (E), and pre-exponential factor (Z) were calculated. It was found that the activation energy increased with the addition of liquid elastomer.

Cite this paper
nullG. Tripathi and D. Srivastava, "Study on the Effect of Carboxyl Terminated Butadiene Acrylonitrile (CTBN) Copolymer Concentration on the Decomposition Kinetics Parameters of Blends of Glycidyl Epoxy and Non-Glycidyl Epoxy Resin," International Journal of Organic Chemistry, Vol. 1 No. 3, 2011, pp. 105-112. doi: 10.4236/ijoc.2011.13016.
References
[1]   E. S. W. Kong, S. M. Lee and H. G. Nelson, “Physical Aging in Graphite/Epoxy Composites,” Polymer Composites, Vol. 3, No. 1, 1982, pp. 29-33. doi:10.1002/pc.750030106

[2]   F. Fraga and M. R. Nú?ez, “Activation Energies for the Epoxy System BADGE n = 0/m-XDA Obtained Using Data from Thermogravimetric Analysis,” Journal of Applied Polymer Science, Vol. 80, No. 5, 2001, pp. 776-782. doi:10.1002/1097-4628(20010502)80:5<776::AID-APP1154>3.0.CO;2-8

[3]   F. Fraga and E. R. Munez, “Master Curves and Lifetime prediction for the Epoxy System Badge n = 0/m-XDA by Thermogravimetric Analysis,” Journal of Applied Polymer Science, Vol. 82, No. 2, 2001, pp. 461-466. doi:10.1002/app.1872

[4]   F. Fraga and E. R. Munez, “Lifetime Predictions for the Epoxy System BADGE n = 0/m-XDA Using Kinetic Analysis of Thermogravimetry Curves,” Journal of Applied Polymer Science, Vol. 83, No. 8, 2002, pp. 1962- 1696. doi:10.1002/app.10091

[5]   L. Barral, J. Cano, J. Lopez, I. LopezBereno, P. Nogeceria, C. Ramirez and M. J. Abad, “Degradation Kinetics of an Epoxy/Cycloaliphatic Amine Resin under Isothermal and Non-isothermal Conditions,” Journal of Thermal Analysis and Calorimetry, Vol. 55, No. 1, 1999, pp. 37-45. doi:10.1023/A:1010115618176

[6]   L. A. Wall, “Title of This Paper,” J. Res. Nat. Bur. Standards A Phys. Chem., Vol. 70A, No. *, 1996, pp. 487- ***.

[7]   T. Ozawa, “A New Method of Analyzing Thermogravi- metric Data,” Bulletin of the Chemical Society of Japan, Vol. 38, No. 11, 1965, pp. 1881-1886. doi:10.1246/bcsj.38.1881

[8]   A. W. Coats, “Kinetic Parameters from Thermogravimetric Data,” Nature, Vol. 201, 1964, pp. 68-69. doi:10.1038/201068a0

[9]   C. D. Doyle, “Series Approximations to the Equation of Thermogravimetric Data,” Nature, Vol. 207, 1965, pp. 290-291. doi:10.1038/207290a0

[10]   J. Y. Lee, H. K. Choi, M. J. Shim and S. W. Kim, “Title of This Paper,” Journal of Industrial and Engineering Chemistry, Vol. 4, No. 1, 1998, pp. 7-11.

[11]   V. Nigam, D. K. Setua and G. N. Mathur, “Characterization of Rubber Epoxy Blends by Thermal Analysis,” Journal of Thermal Analysis and Calorimetry, Vol. 64, No. 2, 2001, pp. 521-527. doi:10.1023/A:1011586715864

[12]   A. Gu and G. Ling, “Thermal Stability and Kinetics Analysis of Rubber-Modified Epoxy Resin by High- Resolution Thermogravimetric Analysis,” Journal of Applied Polymer Science, Vol. 89, No. 13, 2003, pp. 3594- 3600. doi:10.1002/app.12786

[13]   M. L. Auad, P. M. Frontini, J. Borrajo and I. M. Ranguren, “Liquid Rubber Modified Vinyl Ester Resins: Fracture and Mechanical Behavior,” Polymer, Vol. 42, No. 8, 2001, pp. 3723-3730. doi:10.1016/S0032-3861(00)00773-4

[14]   R. J. Day, P. A. Lovell and A. A. Wazzan, “Toughened Carbon/Epoxy Composites Made by Using Core/Shell Particles,” Composites Science and Technology, Vol. 61, No. 1, 2001, pp. 41-56. doi:10.1016/S0266-3538(00)00169-X

[15]   C. W. Wise, W. D. Cook and A. A. Goodwin, “CTBN Rubber Phase Precipitation in Model Epoxy Resins,” Polymer, Vol. 41, No. 12, 2000, pp. 4625-4633. doi:10.1016/S0032-3861(99)00686-2

[16]   I. McEvan, R. A. Pethrick and S. J. Shaw, “Water Absorption in a Rubber-Modified Epoxy Resin; Carboxy Terminated Butadiene Acrylonitrile-Amine Cured Epoxy Resin System,” Polymer, Vol. 40, No. 15, 1999, pp. 4213-4222. doi:10.1016/S0032-3861(98)00649-1

[17]   E. Pezzati, P. Balidini and A. Schiraldi, “Epoxy Polymers: Effect of the Elastomee in the Kinetics of Polymeri- zation,” Thermochemic Acta, Vol. 122, No. 1, 1987, pp. 29-35. doi:10.1016/0040-6031(87)80102-8

[18]   G. Tripathi and D. Srivastava, “Studies on the Physico- Mechanical and Thermal Characteristics of Blends of DGEBA Epoxy, 3,4 Epoxy Cyclohexylmethyl, 3’,4’-Epo- xycylohexane Carboxylate and Carboxyl Terminated Bu- tadiene Co-Acrylonitrile (CTBN),” Materials Science and Engineering: A, Vol. 496, No. 1-2, 2008, pp. 483-493. doi:10.1016/j.msea.2008.06.035

[19]   G. Tripathi and D. Srivastava, “Effect of Carboxyl-Ter- minated Poly(butadiene-co-acrylonitrile) (CTBN) Con- centration on Thermal and Mechanical Properties of Binary Blends of Diglycidyl Ether of Bisphenol-A (DGE- BA) Epoxy Resin,” Materials Science and Engineering: A, Vol. 443, No. 1-2, 2007, pp. 262-269. doi:10.1016/j.msea.2006.09.031

[20]   J. H. Flynn and L. A. Wall, “A Quick, Direct Method for the Determination of Activation Energy from Thermogra- vimetric Data,” Journal of Polymer Science Part B: Polymer Letters, Vol. 4, No. 5, 1966, pp. 323-328. doi:10.1002/pol.1966.110040504

[21]   W. Tang, Y. Liu, C. H. Zhang and C. Wang, “Title of This Paper,” Thermochimica Acta, Vol. 40, No. *, 2003, pp. 839-***.

[22]   H. F. Kissinger, “Reaction Kinetics in Differential Thermal Analysis,” Analytical Chemistry, Vol. 29, No. 11, 1957, pp. 1702-1706. doi:10.1021/ac60131a045

[23]   L. Calabrese and A. Valenza, “The Effect of a Liquid CTBN Rubber Modifier on the Thermo-Kinetic Parame- ters of an Epoxy Resin during a Pultrusion Process,” Composites Science and Technology, Vol. 63, 2003, pp. 851-860.

[24]   C. Gupta and V. K. Kapoor, “Title of This Paper,” Fundamental of Mathematical Statistics (S. Chand and Sons. India) 1984.

[25]   C. P. Raghunandan, R. L. Bindu and K. N. Niran, “A Study of the Oxidative Degradation of Phenol-Formal- dehyde Polycondensates Using Infrared Spectroscopy,” Journal of Applied Polymer Science, Vol. 103, No. 1, 1963, pp. 103-107. doi:10.1002/app.1963.070070110

[26]   M. G. Kim, W. L. S. Nich and R. M. Meacham, “Study on the Curing of Phenol-Formaldehyde Resol Resins by Dynamic Mechanical Analysis,” Industrial & Engineering Chemistry Research, Vol. 30, No. 4, 1991, pp. 798- 803. doi:10.1021/ie00052a027

[27]   T. Monetta and F. Belluchi, “Protective Properties of Epoxy-Based Organic Coatings on Mild Steel,” Progress in Organic Coatings, Vol. 21, No. 4, 1993, pp. 353-369. doi:10.1016/0033-0655(93)80050-K

[28]   K. Srivastava, M. K. Kaushik, D. Srivastava and S. K. Tripathi, “The Effect of Orientation of Various Phenols on the Degradation Kinetics of Blends of Resole and Epoxy,” Journal of Applied Polymer Science, Vol. 102, No. 5, 2006, pp. 4171-4176. doi:10.1002/app.24493

[29]   R. S. Baur, “Epoxy Resin Chemistry II,” ACS Symposium Series, No. 221, Washington, DC, 1979.

[30]   A. F. Yee and R. A. Pearson, “Toughening Mechanisms in Elastomer-Modified Epoxies Part 1 Mechanical Studies,” Journal of Materials Science, Vol. 21, No. 7, 1986, pp. 2462-2467. doi:10.1007/BF01114293

[31]   J. Criado, J. Malek and A. Ortega, “Applicability of the Master Plots in Kinetic Analysis of Non-Isothermal Data,” Thermochimica Acta, Vol. 147, No. 2, 1998, pp. 377-385. doi:10.1016/0040-6031(89)85192-5

 
 
Top