Back
 AiM  Vol.7 No.3 , March 2017
Modified Green Tea Polyphenols, EGCG-S and LTP, Inhibit Endospore in Three Bacillus spp.
Abstract: Endospores have the ability to withstand extreme temperature, desiccation, ultraviolet radiation and chemicals which make them a threat to the food and healthcare industry. Green tea polyphenols (GTP), contain anti-microbial and anti-spore properties but not stable. In this study, two modified lipophilic green tea polyphenols, epigallocatechin-3-gallate-sterate (EGCG-S) and crude lipophilic green tea polyphenols (LTP), were used to compare their anti-spore effect with EGCG and crude GTP. Purified endospores from Bacillus cereus (B. cereus), B. megaterium and B. subtilis were treated with 1% or 5% of four tea polyphenols. Log reduction showed colony forming units (CFU) reduced significantly in all treated samples, ranging from 1.27 to 4.31 with no survivals (CFU = 0) in four samples (P < 0.05). Average percentage of inhibition for these poly-phenols treatment ranged from 91.68% to 100%. The EGCG-S and LTP have equal or better anti-spore activities compared with EGCG and GTP. EGCG-S and LTP were further used to carry out time course study on B. cereus. The results indicated that 15 min of treatment of 1% and 5% LTP and EGCG-S are able to inhibit 98.7% to 100% of germination. Transmission and scanning electron microscopy studies showed that EGCG-S caused surface disruption and damaged spores structural integrity. EGCG-S and LTP are stable anti-spore agents may aid in preventing food and beverage spoilage caused by spore-forming bacteria as well as preventing contamination in the medical industry.
Cite this paper: Ali, B. , Lee, L. , Laskar, N. , Shaikh, N. , Tahir, H. , Hsu, S. , Newby Jr., R. , Valsechi-Diaz, J. and Chu, T. (2017) Modified Green Tea Polyphenols, EGCG-S and LTP, Inhibit Endospore in Three Bacillus spp.. Advances in Microbiology, 7, 175-187. doi: 10.4236/aim.2017.73014.
References

[1]   Atrih, A. and Foster, S.J. (2002) Bacterial Endospores the Ultimate Survivors. International Dairy Journal, 12, 217-223.
https://doi.org/10.1016/S0958-6946(01)00157-1

[2]   Errington, J. (2003) Regulation of Endospore Formation in Bacillus subtilis. Nature Reviews Microbiology, 1, 117-126.
https://doi.org/10.1038/nrmicro750

[3]   Wells-Bennik, M.H., Eijlander, R.T., den Besten, H.M., Berendsen, E.M., Warda, A.K., Krawczyk, A.O., Nierop Groot, M.N., Xiao, Y., Zwietering, M.H., Kuipers, O.P. and Abee, T. (2016) Bacterial Spores in Food: Survival, Emergence, and Outgrowth. Annual Review of Food Science and Technology, 7, 457-482.
https://doi.org/10.1146/annurev-food-041715-033144

[4]   Andersson, A., Ronner, U. and Granum, P.E. (1995) What Problems Does the Food Industry Have with the Spore-Forming Pathogens Bacillus cereus and Clostridium perfringens? International Journal of Food Microbiology, 28, 145-155.
https://doi.org/10.1016/0168-1605(95)00053-4

[5]   Granum, P.E. and Lund, T. (1997) Bacillus cereus and Its Food Poisoning Toxins. FEMS Microbiology Letters, 157, 223-228.
https://doi.org/10.1111/j.1574-6968.1997.tb12776.x

[6]   Piggot, P.J. and Hilbert, D.W. (2004) Sporulation of Bacillus subtilis. Current Opinion in Microbiology, 7, 579-586.
https://doi.org/10.1016/j.mib.2004.10.001

[7]   Stephenson, K. and Hoch, J.A. (2002) Evolution of Signalling in the Sporulation Phosphorelay. Molecular Microbiology, 46, 297-304.
https://doi.org/10.1046/j.1365-2958.2002.03186.x

[8]   Midura, T.F., Snowden, S., Wood, R.M. and Arnon, S.S. (1979) Isolation of Clostridium botulinum from Honey. Journal of Clinical Microbiology, 9, 282-283.

[9]   Le Loir, Y., Baron, F. and Gautier, M. (2003) Staphylococcus aureus and Food Poisoning. Genetics and Molecular Research, 2, 63-76.

[10]   Heyndrickx, M., Coorevits, A., Scheldeman, P., Lebbe, L., Schumann, P., Rodriguez-Diaz, M., Forsyth, G., Dinsdale, A., Heyrman, J., Logan, N.A. and De Vos, P. (2012) Emended Descriptions of Bacillus sporothermodurans and Bacillus oleronius with the Inclusion of Dairy Farm Isolates of Both Species. International Journal of Systematic and Evolutionary Microbiology, 62, 307-314. https://doi.org/10.1099/ijs.0.026740-0

[11]   Russell, A.D. (1990) Bacterial Spores and Chemical Sporicidal Agents. Clinical Microbiology Reviews, 3, 99-119. https://doi.org/10.1128/CMR.3.2.99

[12]   Sakanaka, S., Kim, M., Taniguchi, M. and Yamamoto, T. (1989) Antibacterial Substances in Japanese Green Tea Extract against Streptococcus mutans, a Cariogenic Bacterium. Agricultural and Biological Chemistry 53, 2307-2311.

[13]   Shanrangi, A.B. (2009) Medicinal and Therapeutic Potentialities of Tea (Camellia sinensis L.)—A Review. Food Research International, 42, 529-535.
https://doi.org/10.1016/j.foodres.2009.01.007

[14]   Chu, T.-C., Adams, S.D. and Lee, L.H. (2014) Tea Polyphenolic Compounds against Herpes Simplex Viruses. In: Gupta, S.P. Ed., Cancer-Causing Viruses and Their Inhibitors, CRC Press, Taylor & Francis Group, 321-344. https://doi.org/10.1201/b16780-12

[15]   De Oliveira, A., Adams, S.D., Lee, L.H., Murray, S.R., Hsu, S.D., Hammond, J.R., Dickinson, D., Chen, P. and Chu, T.C. (2013) Inhibition of Herpes Simplex Virus Type 1 with the Modified Green Tea Polyphenol Palmitoyl-Epigallocatechin Gallate. Food and Chemical Toxicology, 52, 207-215. https://doi.org/10.1016/j.fct.2012.11.006

[16]   Fujimura, Y. (2015) Small Molecule-Sensing Strategy and Techniques for Understanding the Functionality of Green Tea. Bioscience, Biotechnology, and Biochemistry, 79, 687-699. https://doi.org/10.1080/09168451.2014.996205

[17]   Imai, K., Suga, K. and Nakachi, K. (1997) Cancer-Preventive Effects of Drinking Green Tea among a Japanese Population. Preventive Medicine, 26, 769-775.
https://doi.org/10.1006/pmed.1997.0242

[18]   Isaacs, C.E., Wen, G.Y., Xu, W., Jia, J.H., Rohan, L., Corbo, C., Di Maggio, V., Jenkins, E.C. and Hillier, S. (2008) Epigallocatechin Gallate Inactivates Clinical Isolates of Herpes Simplex Virus. Antimicrobial Agents and Chemotherapy, 52, 962-970.
https://doi.org/10.1128/AAC.00825-07

[19]   Mukhtar, H. and Ahmad, N. (2000) Tea Polyphenols: Prevention of Cancer and Optimizing Health. American Journal of Clinical Nutrition, 71, 1698S-1702S.

[20]   Steinmann, J., Buer, J., Pietschmann, T. and Steinmann, E. (2013) Anti-Infective Properties of Epigallocatechin-3-Gallate (EGCG), a Component of Green Tea. British Journal of Pharmacology, 168, 1059-1073. https://doi.org/10.1111/bph.12009

[21]   Sueoka, N., Suganuma, M., Sueoka, E., Okabe, S., Matsuyama, S., Imai, K., Nakachi, K. and Fujiki, H. (2001) A New Function of Green Tea: Prevention of Lifestyle-Related Diseases. Annals of the New York Academy of Sciences, 928, 274-280.
https://doi.org/10.1111/j.1749-6632.2001.tb05656.x

[22]   Williamson, M.P., McCormick, T.G., Nance, C.L. and Shearer, W.T. (2006) Epigallocatechin Gallate, the Main Polyphenol in Green Tea, Binds to the T-Cell Receptor, CD4: Potential for HIV-1 Therapy. Journal of Allergy and Clinical Immunology, 118, 1369-1374.
https://doi.org/10.1016/j.jaci.2006.08.016

[23]   Zu, M., Yang, F., Zhou, W., Liu, A., Du, G. and Zheng, L. (2012) In Vitro Anti-Influenza Virus and Anti-Inflammatory Activities of Theaflavin Derivatives. Antiviral Research, 94, 217-224.
https://doi.org/10.1016/j.antiviral.2012.04.001

[24]   Haghjoo, B., Lee, L.H., Habiba, U., Tahir, H., Olabi, M. and Chu, T.-C. (2013) The Synergistic Effects of Green Tea Polyphenols and Antibiotics against Potential Pathogens. Advances in Bioscience and Biotechnology, 4, 959-967. https://doi.org/10.4236/abb.2013.411127

[25]   Paterson, I. and Anderson, E.A. (2005) Chemistry. The Renaissance of Natural Products as Drug Candidates. Science, 310, 451-453. https://doi.org/10.1126/science.1116364

[26]   Chen, P., Dickinson, D. and Hsu, S.D. (2009) Lipid-Soluble Green Tea Polyphenols: Stabilized for Effective Formulation. In: McKinley, H. and Jamieson, M. Eds., Handbook of Green Tea and Health Research, Nova Science Publishers, New York, 45-61.

[27]   Chen, P., Tan, Y., Sun, D. and Zheng, X.M. (2003) A Novel Long-Chain Acyl-Derivative of Epigallocatechin-3-O-Gallate Prepared and Purified from Green Tea Polyphenols. Journal of Zhejiang University Science, 4, 714-718. https://doi.org/10.1631/jzus.2003.0714

[28]   Hara-Kudo, Y., Yamasaki, A., Sasaki, M., Okubo, T., Minai, Y., Haga, M., Kondo, K. and Sugita-Konishi, Y. (2005) Antibacterial Action on Pathogenic Bacterial Spore by Green Tea Catechins. Journal of the Science of Food and Agriculture, 85, 2354-2361.
https://doi.org/10.1002/jsfa.2259

[29]   Sakanaka, S., Juneja, L.R. and Taniguchi, M. (2000) Antimicrobial Effects of Green Tea Polyphenols on Thermophilic Spore-Forming Bacteria. Journal of Bioscience and Bioengineering, 90, 81-85. https://doi.org/10.1016/S1389-1723(00)80038-9

[30]   Wuytack, E.Y., Soons, J., Poschet, F. and Michiels, C.W. (2000) Comparative Study of Pressure- and Nutrient-Induced Germination of Bacillus subtilis Spores. Applied and Environmental Microbiology, 66, 257-261. https://doi.org/10.1128/AEM.66.1.257-261.2000

[31]   Lee, L.H., Krumins, J.A. and Chu, T.C. (2015) Microbiology Laboratory Manuals. Hayden-McNeil, Plymouth.

[32]   Chu, T.C., Murray, S.R., Hsu, S.F., Vega, Q. and Lee, L.H. (2011) Temperature-Induced Activation of Freshwater Cyanophage AS-1 Prophage. Acta Histochemica, 113, 294-299.
https://doi.org/10.1016/j.acthis.2009.11.003

[33]   Lee, L.A., Nguyen, Q.L., Wu, L., Horvath, G., Nelson, R.S. and Wang, Q. (2012) Mutant Plant Viruses with Cell Binding Motifs Provide Differential Adhesion Strengths and Morphologies. Biomacromolecules, 13, 422-431. https://doi.org/10.1021/bm2014558

[34]   Costa, T., Serrano, M., Steil, L., Volker, U., Moran, C.P., Jr. and Henriques, A.O. (2007) The Timing of cotE Expression Affects Bacillus subtilis Spore Coat Morphology but Not Lysozyme Resistance. Journal of Bacteriology, 189, 2401-2410. https://doi.org/10.1128/JB.01353-06

[35]   Su, J., Bao, P., Bai, T., Deng, L., Wu, H., Liu, F. and He, J. (2013) CotA, a Multicopper Oxidase from Bacillus pumilus WH4, Exhibits Manganese-Oxidase Activity. PLoS ONE, 8, e60573. https://doi.org/10.1371/journal.pone.0060573

[36]   Ragkousi, K., Eichenberger, P., van Ooij, C. and Setlow, P. (2003) Identification of a New Gene Essential for Germination of Bacillus subtilis Spores with Ca2+-Dipicolinate. Journal of Bacteriology, 185, 2315-2329. https://doi.org/10.1128/JB.185.7.2315-2329.2003

 
 
Top