AS  Vol.8 No.2 , February 2017
A Review of Genome Sequencing in the Largest Cereal Genome, Triticum aestivum L.
Abstract: Sequencing whole plant genomes has advanced rapidly with the development of next generation sequencing (NGS) technologies and bioinformatics, enabling the study of large and complex genomes such as that of the hexaploid cereal, Triticum aestivum L. (bread wheat). Despite advances, however, confounding factors such as repetitive elements and low polymorphism still hinder sequencing attempts. Isolation techniques such as sequencing of diploid progenitors and chromosome separation through flow cytometry have showed promise in reducing the size of the genome for sequencing. In this review we discuss the advances and stumbling blocks that have been encountered on the road toward the complete hexaploid wheat genome sequence. We also discuss the latest complimentary techniques and the progression of accumulation of sequence data relevant to wheat genome research.
Cite this paper: Bierman, A. and Botha, A. (2017) A Review of Genome Sequencing in the Largest Cereal Genome, Triticum aestivum L.. Agricultural Sciences, 8, 194-207. doi: 10.4236/as.2017.82014.

[1]   Mayer, K.F.X., Rogers, J., Dolezel, J., Pozniak, C., Eversole, K., Feuillet, C., et al. (2014) A Chromosome-Based Draft Sequence of the Hexaploid Bread Wheat (Triticum aestivum) Genome. Science, 345, Article ID: 1251788.

[2]   Gautier, M.F., Cosson, P., Guirao, A., Alary, R. and Joudrier, P. (2000) Puroindoline Genes Are Highly Conserved in Diploid Ancestor Wheats and Related Species but Absent in Tetraploid Triticum Species. Plant Science, 153, 81-91.

[3]   Martinez-Perez, E., Shaw, P. and Moore, G. (2001) The Ph1 Locus Is Needed to Ensure Specific Somatic and Meiotic Centromere Association. Nature, 411, 204-207.

[4]   Petersen, G., Seberg, O., Yde, M. and Berthelsen, K. (2006) Phylogenetic Relationships of Triticum and Aegilops and Evidence for the Origin of the A, B, and D Genomes of Common Wheat (Triticum aestivum). Molecular Phylogenetics and Evolution, 39, 70-82.

[5]   Nesbitt, M. and Samuel, D. (1996) From Staple Crop to Extinction? The Archaeology and History of the Hulled Wheats. Hulled Wheats, 4, 41-100.

[6]   Kumar, A., Seetan, R., Mergoum, M., Tiwari, V.K., Iqbal, M.J., Wang, Y., et al. (2015) Radiation Hybrid Maps of the D-Genome of Aegilops tauschii and Their Application in Sequence Assembly of Large and Complex Plant Genomes. BMC Genomics, 16, 800.

[7]   Gill, B.S., Appels, R., Botha-Oberholster, A.-M., Buell, C.R., Bennetzen, J.L., Chalhoub, B., et al. (2004) A Workshop Report on Wheat Genome Sequencing: International Genome Research on Wheat Consortium. Genetics, 168, 1087-1096.

[8]   Gupta, P.K., Mir, R.R., Mohan, A. and Kumar, J. (2008) Wheat Genomics: Present Status and Future Prospects. International Journal of Plant Genomics, 2008, Article ID: 896451.

[9]   Mochida, K., Yoshida, T., Sakurai, T., Ogihara, Y. and Shinozaki, K. (2009) TriFLDB: A Database of Clustered Full-Length Coding Sequences from Triticeae with Applications to Comparative Grass Genomics. Plant Physiology, 150, 1135-1146.

[10]   Qi, L.L., Echalier, B., Chao, S., Lazo, G.R., Butler, G.E., Anderson, O.D., et al. (2004) A Chromosome Bin Map of 16,000 Expressed Sequence Tag Loci and Distribution of Genes among the Three Genomes of Polyploid Wheat. Genetics, 168, 701-712.

[11]   Allen, A.M., Barker, G.L.A., Wilkinson, P., Burridge, A., Winfield, M., Coghill, J., et al. (2013) Discovery and Development of Exome-Based, Co-Dominant Single Nucleotide Polymorphism Markers in Hexaploid Wheat (Triticum aestivum L.). Plant Biotechnology Journal, 11, 279-295.

[12]   Krasileva, K.V., Buffalo, V., Bailey, P., Pearce, S., Ayling, S., Tabbita, F., et al. (2013) Separating Homeologs by Phasing in the Tetraploid Wheat Transcriptome. Genome Biology, 14, R66.

[13]   Saintenac, C., Jiang, D., Wang, S. and Akhunov, E. (2013) Sequence-Based Mapping of the Polyploid Wheat Genome. G3: Genes Genomes Genetics, 3, 1105-1114.

[14]   Coram, T.E., Settles, M.L., Wang, M. and Chen, X. (2008) Surveying Expression Level Polymorphism and Single-Feature Polymorphism in Near-Isogenic Wheat Lines Differing for the Yr5 Stripe Rust Resistance Locus. Theoretical and Applied Genetics, 117, 401-411.

[15]   Bernardo, A.N., Bradbury, P.J., Ma, H., Hu, S., Bowden, R.L., Buckler, E.S., et al. (2009) Discovery and Mapping of Single Feature Polymorphisms in Wheat Using Affymetrix Arrays. BMC Genomics, 10, 251.

[16]   Waterston, R. (1998) Genome Sequence of the Nematode C. elegans: A Platform for Investigating Biology. Science, 282, 2012-2018.

[17]   The, A.G.I. (2000) Analysis of the Genome Sequence of the Flowering Plant Arabidopsis thaliana. Nature, 408, 796-815.

[18]   McPherson, J.D., Marra, M., Hillier, L., Waterston, R.H., Chinwalla, A., Wallis, J., et al. (2001) A Physical Map of the Human Genome. Nature, 409, 934-941.

[19]   Feng, Q., Zhang, Y., Hao, P., Wang, S., Fu, G., Huang, Y., et al. (2002) Sequence and Analysis of Rice Chromosome 4. Nature, 420, 316-320.

[20]   Sasaki, T., Matsumoto, T., Yamamoto, K., Sakata, K., Baba, T. and Katayose, Y. (2002) The Genome Sequence and Structure of Rice Chromosome 1. Nature, 420, 312-316.

[21]   Wood, V., Gwilliam, R., Rajandream, M.A., Lyne, M., Lyne, R., Stewart, A., et al. (2002) The Genome Sequence of Schizosaccharomyces pombe. Nature, 415, 871-880.

[22]   Rice Chromosome Sequencing Consortium (2003) In-Depth View of Structure, Activity and Evolution of Rice Chromosome. Science, 300, 1566-1569.

[23]   Rabinowicz, P.D., Schutz, K., Dedhia, N., Yordan, C., Parnell, L.D., Stein, L., et al. (1999) Differential Methylation of Genes and Retrotransposons Facilitates Shotgun Sequencing of Maize Genome. Nature Genetics, 23, 305-308.

[24]   Peterson, D.G., Schulze, S.R., Sciara, E.B., Lee, S.A., Bowers, J.E., Nagel, A., et al. (2002) Integration of Cot Analysis, DNA Cloning and High-Throughput Sequencing Facilitates Genome Characterization and Gene Discovery. Genome Research, 12, 795-807.

[25]   Yuan, Y., SanMiguel, P. and Bennetzen, J. (2003) High-Cot Sequence Analysis of the Maize Genome. The Plant Journal, 34, 249-255.

[26]   Vrána, J., Kubaláková, M., Simková, H., Cíhalíková, J., Lysák, M.A., Dolezel, J. (2000) Flow Sorting of Mitotic Chromosomes in Common Wheat (Triticum aestivum L.). Genetics, 156, 2033-2041

[27]   Sáfár, J., Bartos, J., Janda, J., Bellec, A., Kubaláková, M., Valárik, M., et al. (2004) Dissecting Large and Complex Genomes: Flow Sorting and BAC Cloning of Individual Chromosomes from Bread Wheat. Plant Journal, 39, 960-968.

[28]   Lijavetzky, D., Muzzi, G., Wicker, T., Keller, B., Wing, R. and Dubcovsky, J. (1999) Construction and Characterization of a Bacterial Artificial Chromosome (BAC) Library for the A Genome of Wheat. Genome, 42, 1176-1182.

[29]   Kubaláková, M., Vrána, J., Cíhalíková, J., Simková, H. and Dolezel, J. (2002) Flow Karyotyping and Chromosome Sorting in Bread Wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 104, 1362-1372.

[30]   Gill, B.S., Friebe, B. and Endo, T.R. (1991) Standard Karyotype and Nomenclature System for Description of Chromosome Bands and Structural Aberrations in Wheat (Triticum aestivum). Genome, 34, 830-839.

[31]   Itoh, T., Tanaka, T., Barrero, R.A., Yamasaki, C., Fujii, Y., Hilton, P.B., et al. (2007) Curated Genome Annotation of Oryza sativa ssp. japonica and Comparative Genome Analysis with Arabidopsis thaliana. Genome Research, 17, 175-183.

[32]   Pfosser, M., Amon, A., Lelley, T. and Heberle-Bors, E. (1995) Evaluation of Sensitivity of Flow Cytometry in Detecting Aneuploidy in Wheat Using Disomic and Ditelosomic Wheat-Rye Addition Lines. Cytometry, 21, 387-393.

[33]   Jia, J., Zhao, S., Kong, X., Li, Y., Zhao, G., He, W., et al. (2013) Aegilops tauschii Draft Genome Sequence Reveals a Gene Repertoire for Wheat Adaptation. Nature, 496, 91-95.

[34]   Ling, H.-Q., Zhao, S., Liu, D., Wang, J., Sun, H., Zhang, C., et al. (2013) Draft Genome of the Wheat A-Genome Progenitor Triticum urartu. Nature, 496, 87-90.

[35]   Brenchley, R., Spannagl, M., Pfeifer, M., Barker, G.L.A., D’Amore, R., Allen, A.M., et al. (2012) Analysis of the Bread Wheat Genome Using Whole-Genome Shotgun Sequencing. Nature, 491, 705-710.

[36]   Sears, E.R. (1954) The Aneuploids of Common Wheat. Research Bulletin No. 572, Agricultural Experiment Station, University of Missouri, Columbia, 1-58.

[37]   Sears, E.R. and Sears, L.M.S. (1978) The Telocentric Chromosomes of Common Wheat. Proceedings of the 5th International Wheat Genetics Symposium, New Delhi, 23-28 February 1978, 389-407.

[38]   Vogel, J.P., Garvin, D.F., Mockler, T.C., Schmutz, J., Rokshar, D. and Bevan, M.W. (2010) Genome Sequencing and Analysis of the Model Grass Brachypodium distachyon. Nature, 463, 763-768.

[39]   Burr, B. (2005) The Map-Based Sequence of the Rice Genome. Nature, 436, 793-800.

[40]   Paterson, A.H., Bowers, J.E., Bruggmann, R., Dubchak, I., Grimwood, J., Gundlach, H., et al. (2009) The Sorghum bicolor Genome and the Diversification of Grasses. Nature, 457, 551-556.

[41]   Mayer, K.F., Waugh, R., Brown, J.W., Schulman, A., Langridge, P., Platzer, M., et al. (2012) A Physical, Genetic and Functional Sequence Assembly of the Barley Genome. Nature, 491, 711-716.

[42]   Martis, M., Zhou, R., Haseneyer, G., Schmutzer, T., Vrána, J., Kubaláková, M., et al. (2013) Reticulate Evolution of the Rye Genome. The Plant Cell, 25, 3685-3698.

[43]   Bennetzen, J., Schmutz, J., Wang, H., Percifield, R., Hawkins, J., Pontaroli, A.C., et al. (2012) Reference Genome Sequence of the Model Plant Setaria. Nature Biotechnology, 30, 555-561.

[44]   Schnable, P.S., Ware, D., Fulton, R.S., Stein, J.C., Pasternak, S., Liang, C., et al. (2009) The B73 Maize Genome: Complexity, Diversity and Dynamics. Science, 326, 1112-1115.

[45]   Pfeifer, M., Kugler, K.G., Sandve, S.R., Zhan, B., Rudi, H., Hvidsten, T.R., et al. (2014) Genome Interplay in the Grain Transcriptome of Hexaploid Bread Wheat. Science, 345, Article ID: 1250091.

[46]   Adams, K., Cronn, R., Percifield, R. and Wendel, J.F. (2003) Genes Duplicated by Polyploidy Show Unequal Contributions to the Transcriptome and Organ-Specific Reciprocal Silencing. Proceedings of the National Academy of Sciences, 100, 4649-1654.

[47]   Yoo, M.J., Szadkowski, E. and Wendel, J.F. (2013) Homoeolog Expression Bias and Expression Level Dominance in Allopolyploid Cotton. Heredity, 110, 171-180.

[48]   Cheng, F., Wu, J., Fang, L., Sun, S., Liu, B., Lin, K., et al. (2012) Biased Gene Fractionation and Dominant Gene Expression among the Subgenomes of Brassica rapa. PLoS ONE, 7, e36442.

[49]   Chen, Z. (2007) Genetic and Epigenetic Mechanisms for Gene Expression and Phenotypic Variation in Plant Polyploids. Annual Review of Plant Biology, 58, 377.

[50]   Schnable, J., Springer, N. and Freeling, M. (2011) Differentiation of the Maize Subgenomes by Genome Dominance and Both Ancient and Ongoing Gene Loss. Proceedings of the National Academy of Sciences, 108, 4069-4074.

[51]   Mikheyev, A. and Tin, M. (2014) A First Look at the Oxford Nanopore MinION Sequencer. Molecular Ecology Resources, 14, 1097-1102.

[52]   Simková, H., Staňková, H., Hastie, A., Chan, S., Vrána, J., Tulpova, Z., et al. (2016) BioNano Genome Map of Bread Wheat 7DS Arm Supports Sequence Assembly and Analysis. Proceedings of 24th Plant and Animal Genome Conference, San Diego, 9-13 January 2016.

[53]   Zhu, T., Rodriguez, J.C., Deal, K.R., Van, S., Dvorak, J. and Luo, M.-C. (2016) Evolution of Genome Structure in Polyploid Wheat Revealed by Comparison of Wheat and Aegilops tauschii Whole-Genome BioNano Maps. Proceedings of 24th Plant and Animal Genome Conference, San Diego, 9-13 January 2016, 1-2.

[54]   Zimin, A. (2016) Assembly of the 4.5 Gb Ancestral Wheat D-Genome from Hybrid PacBio and Illumina Data. Proceedings of 24th Plant and Animal Genome Conference, San Diego, 9-13 January 2016.

[55]   Chaisson, M., Huddleston, J., Dennis, M., Sudmant, P.H., Malig, M., Hormozdiari, F., et al. (2015) Resolving the Complexity of the Human Genome Using Single-Molecule Sequencing. Nature, 517, 608-611.

[56]   Ling, H.-Q. (2016) Genome Sequence of T. urartu. Proceedings of 24th Plant and Animal Genome Conference, San Diego, 9-13 January 2016, 1-2.

[57]   Clavijo, B.J., Venturini, L., Schudoma, C., Garcia Accinelli, G., Kaithakottil, G., Wright, J., et al. (2016) An Improved Assembly and Annotation of the Allohexaploid Wheat Genome Identifies Complete Families of Agronomic Genes and Provides Genomic Evidence for Chromosomal Translocations.

[58]   Ruperao, P., Chan, C., Azam, S., Karafiatova, M., Hayashi, S., Cizkova, J., et al. (2014) A Chromosomal Genomics Approach to Assess and Validate the Desi and Kabuli Draft Chickpea Genome Assemblies. Plant Biotechnology Journal, 14, 778-786.

[59]   Ganapathy, G., Howard, J., Ward, J., Li, J., Li, B., Li, Y., et al. (2014) High-Coverage Sequencing and Annotated Assemblies of the Budgerigar Genome. GigaScience, 3, 11.

[60]   Pendleton, M., Sebra, R., Pang, A., Ummat, A., Franzen, O., Rausch, T., et al. (2015) Assembly and Diploid Architecture of an Individual Human Genome via Single-Molecule Technologies. Nature Methods, 12, 780-786.

[61]   Callaway, E. (2014) “Platinum” Genome Shapes Up. Nature, 515, 323.

[62]   Shearer, L. anderson, L., de Jong, H., Smit, S., Goicoechea, J.L., Roe, B.A., et al. (2014) Fluorescence in Situ Hybridization and Optical Mapping to Correct Scaffold Arrangement in the Tomato Genome. Genes Genomes Genetics, 4, 1395-1405.

[63]   Paux, E., Sourdille, P., Salse, J., Saintenac, C., Choulet, F., Leroy, P., et al. (2008) A Physical Map of the 1-Gigabase Bread Wheat Chromosome 3B. Science, 322, 101-104.

[64]   Luo, M.-C., Gu, Y.Q., You, F.M., Deal, K.R., Ma, Y., Hu, Y., et al. (2013) A 4-Gigabase Physical Map Unlocks the Structure and Evolution of the Complex Genome of Aegilops tauschii, the Wheat D-Genome Progenitor. Proceedings of the National Academy of Sciences USA, 110, 7940-7945.

[65]   Staňková, H., Hastie, A.R., Chan, S., Chan, S., Vrána, J., Tulpova, Z., et al. (2016) BioNano Genome Mapping of Individual Chromosomes Supports Physical Mapping and Sequence Assembly in Complex Plant Genomes. Plant Biotechnology Journal, 14, 1523-1531.

[66]   Mascher, M., Muehlbauer, G., Rokhsar, D., Chapman, J., Schmutz, J., Barry, K., et al. (2013) Anchoring and Ordering NGS Contig Assemblies by Population Sequencing (POPSEQ). The Plant Journal, 76, 718-727.

[67]   Glenn, T.C. (2011) Field Guide to Next-Generation DNA Sequencers. Molecular Ecology Resources, 11, 759-769.

[68]   Cao, H., Hastie, A.R., Cao, D., et al. (2014) Rapid Detection of Structural Variation in a Human Genome Using Nanochannel-Based Genome Mapping Technology. GigaScience, 3, 1-11.

[69]   Blakesley, R.W., Hansen, N.F., Gupta, J., McDowell, J.C., Maskeri, B., Barnabas, B B., et al. (2010) Effort Required to Finish Shotgun-Generated Genome Sequences Differs Significantly Among Vertebrates. BMC Genomics, 11, 21.

[70]   Hastie, A.R., Dong, L., Smith, A., Finkelstein, J., Lam, E.T., Huo, N., et al. (2013) Rapid Genome Mapping in Nanochannel Arrays for Highly Complete and Accurate De Novo Sequence Assembly of the Complex Aegilops tauschii Genome. PloS ONE, 8, e55864.

[71]   Molnár, I., Kubaláková, M., Simková, H., Farkas, A., Cseh, A., Megyeri, M., et al. (2014) Flow Cytometric Chromosome Sorting from Diploid Progenitors of Bread Wheat, T. urartu, Ae. speltoides and Ae. tauschii. Theoretical and Applied Genetics, 127, 1091-1104.

[72]   Mayer, K.F.X., Martis, M., Hedley, P.E. Simková, H., Liu, H., Morris, J.A., et al. (2011) Unlocking the Barley Genome by Chromosomal and Comparative Genomics. Plant Cell, 23, 1249-1263.

[73]   Hernandez, P., Martis, M., Dorado, G., Pfeifer, M., Gálvez, S., Schaaf, S., et al. (2012) Next-Generation Sequencing and Syntenic Integration of Flow-Sorted Arms of Wheat Chromosome 4A Exposes the Chromosome Structure and Gene Content. Plant Journal, 69, 377-386.

[74]   Vitulo, N., Albiero, A., Forcato, C., Campagna, D., Dal Pero, F., Bagnaresi, P., et al. (2011) First Survey of the Wheat Chromosome 5A Composition through a Next Generation Sequencing Approach. PloS ONE, 6, Article ID: 226421.