Back
 ABC  Vol.7 No.1 , February 2017
Regulation of Intestinal Cholesterol Absorption: A Disease Perspective
Abstract: Hypercholesterolemia promotes atherosclerosis and precise regulation of cholesterol homeostasis is essential. Besides risk factor for cardiovascular disease, abnormalities in cholesterol metabolism have been associated with type 2 diabetes. Cholesterol homeostasis in the body is maintained by de novo synthesis. Furthermore, intestinal cholesterol absorption has recently been considered as an important control point in cholesterol homeostasis. Important insights have been gained into the mechanisms of transport of cholesterol from the intestinal lumen into the enterocytes. Several transporter proteins that appear to be key players in the control of the cholesterol absorption from the intestinal lumen have been identified. Here, we review intestinal cholesterol absorption and the mechanisms underlying alterations in cholesterol absorption under physiological conditions and in diseases such as diabetes mellitus.
Cite this paper: Iqbal, J. , Qarni, A. and Hawwari, A. (2017) Regulation of Intestinal Cholesterol Absorption: A Disease Perspective. Advances in Biological Chemistry, 7, 60-75. doi: 10.4236/abc.2017.71004.
References

[1]   Rezen, T., Rozman, D., Pascussi, J.M. and Monostory, K. (2011) Interplay between Cholesterol and Drug Metabolism. Biochimica et Biophysica Acta, 1814, 146-160.
https://doi.org/10.1016/j.bbapap.2010.05.014

[2]   Maxfield, F.R. and Tabas, I. (2005) Role of Cholesterol and Lipid Organization in Disease. Nature, 438, 612-621.
https://doi.org/10.1038/nature04399

[3]   Iqbal, J. and Hussain, M.M. (2009) Intestinal Lipid Absorption. American Journal of Physiology, Endocrinology and Metabolism, 296, E1183-E1194.
https://doi.org/10.1152/ajpendo.90899.2008

[4]   Van der Wulp, M.Y., Verkade, H.J. and Groen, A.K. (2013) Regulation of Cholesterol Homeostasis. Molecular and Cellular Endocrinology, 368, 1-16.
https://doi.org/10.1016/j.mce.2012.06.007

[5]   Grundy, S.M. and Metzger, A.L. (1972) A Physiological Method for Estimation of Hepatic Secretion of Biliary Lipids in Man. Gastroenterology, 62, 1200-1217.

[6]   Wilson, M.D. and Rudel, L.L. (1994) Review of Cholesterol Absorption with Emphasis on Dietary and Biliary Cholesterol. Journal of Lipid Research, 35, 943-955.

[7]   Bays, H. (2002) Ezetimibe. Expert Opinion on Investigational Drugs, 11, 1587-1604.
https://doi.org/10.1517/13543784.11.11.1587

[8]   Clearfield, M.B. (2003) A Novel Therapeutic Approach to Dyslipidemia. Journal of the American Osteopathic Association, 103, S16-S20.

[9]   Kannel, W.B., Castelli, W.P. and Gordon, T. (1979) Cholesterol in the Prediction of Atherosclerotic Disease. New Perspectives Based on the Framingham Study. Annals of Internal Medicine, 90, 85-91.
https://doi.org/10.7326/0003-4819-90-1-85

[10]   Liu, J., Sempos, C.T., Donahue, R.P., Dorn, J., Trevisan, M. and Grundy, S.M. (2006) Non-High-Density Lipoprotein and Very-Low-Density Lipoprotein Cholesterol and Their Risk Predictive Values in Coronary Heart Disease. American Journal of Cardiology, 98, 1363-1368.
https://doi.org/10.1016/j.amjcard.2006.06.032

[11]   Steinberg, D. (1989) The Cholesterol Controversy Is Over. Why Did It Take So Long? Circulation, 80, 1070-1078.
https://doi.org/10.1161/01.CIR.80.4.1070

[12]   Simonen, P.P., Gylling, H.K. and Miettinen, T.A. (2002) Diabetes Contributes to Cholesterol Metabolism Regardless of Obesity. Diabetes Care, 25, 1511-1515.
https://doi.org/10.2337/diacare.25.9.1511

[13]   Simonen, P., Gylling, H. and Miettinen, T.A. (2008) The Validity of Serum Squalene and Non-Cholesterol Sterols as Surrogate Markers of Cholesterol Synthesis and Absorption in Type 2 Diabetes. Atherosclerosis, 197, 883-888.
https://doi.org/10.1016/j.atherosclerosis.2007.08.003

[14]   Pihlajamaki, J., Gylling, H., Miettinen, T.A. and Laakso, M. (2004) Insulin Resistance Is Associated with Increased Cholesterol Synthesis and Decreased Cholesterol Absorption in Normoglycemic Men. Journal of Lipid Research, 45, 507-512.
https://doi.org/10.1194/jlr.M300368-JLR200

[15]   Miettinen, T.A. and Gylling, H. (2000) Cholesterol Absorption Efficiency and Sterol Metabolism in Obesity. Atherosclerosis, 153, 241-248.
https://doi.org/10.1016/S0021-9150(00)00404-4

[16]   Gylling, H., Hallikainen, M., Pihlajamaki, J., Simonen, P., Kuusisto, J., Laakso, M. and Miettinen, T.A. (2010) Insulin Sensitivity Regulates Cholesterol Metabolism to a Greater Extent than Obesity: Lessons from the METSIM STUDY. Journal of Lipid Research, 51, 2422-2427.
https://doi.org/10.1194/jlr.P006619

[17]   Krauss, R.M. (2004) Lipids and Lipoproteins in Patients with Type 2 Diabetes. Diabetes Care, 27, 1496-1504.
https://doi.org/10.2337/diacare.27.6.1496

[18]   Dietschy, J.M., Turley, S.D. and Spady, D.K. (1993) Role of Liver in the Maintenance of Cholesterol and Low Density Lipoprotein Homeostasis in Different Animal Species, Including Humans. Journal of Lipid Research, 34, 1637-1659.

[19]   Robichon, C. and Dugail, I. (2007) De Novo Cholesterol Synthesis at the Crossroads of Adaptive Response to Extracellular Stress through SREBP. Biochimie, 89, 260-264.
https://doi.org/10.1016/j.biochi.2006.09.015

[20]   Kruit, J.K., Groen, A.K., Van Berkel, T.J. and Kuipers, F. (2006) Emerging Roles of the Intestine in Control of Cholesterol Metabolism. World Journal of Gastroenterology, 12, 6429-6439.
https://doi.org/10.3748/wjg.v12.i40.6429

[21]   Wang, L.J. and Song, B.L. (2012) Niemann-Pick C1-Like 1 and Cholesterol Uptake. Biochimica et Biophysica Acta, 1821, 964-972.
https://doi.org/10.1016/j.bbalip.2012.03.004

[22]   Brown, J.M. and Yu, L. (2009) Opposing Gatekeepers of Apical Sterol Transport: Niemann-Pick C1-Like 1 (NPC1L1) and ATP-Binding Cassette Transporters G5 and G8 (ABCG5/ABCG8). Immunology Endocrine and Metabolic Agents in Medicinal Chemistry, 9, 18-29.
https://doi.org/10.2174/187152209788009797

[23]   Degirolamo, C., Sabba, C. and Moschetta, A. (2015) Intestinal Nuclear Receptors in HDL Cholesterol Metabolism. JOurnal of Lipid Research, 56, 1262-1270.
https://doi.org/10.1194/jlr.R052704

[24]   Bonamassa, B. and Moschetta, A. (2013) Atherosclerosis: Lessons from LXR and the Intestine. Trends in Endocrinology and Metabolism, 24, 120-128.
https://doi.org/10.1016/j.tem.2012.10.004

[25]   Van der Velde, A.E., Brufau, G. and Groen, A.K. (2010) Transintestinal Cholesterol Efflux. Current Opinion in Lipidology, 21, 167-171.
https://doi.org/10.1097/MOL.0b013e3283395e45

[26]   Holt, P.R., Fairchild, B.M. and Weiss, J. (1986) A Liquid Crystalline Phase in Human Intestinal Contents during Fat Digestion. Lipids, 21, 444-446.
https://doi.org/10.1007/BF02536401

[27]   Swell, L., Trout, E.C., Hopper, J.R., Field, H. and Treadwell, C.R. (1958) Specific Function of Bile Salts in Cholesterol Absorption. Proceedings of the Society for Experimental Biology and Medicine, 98, 174-176.
https://doi.org/10.3181/00379727-98-23979

[28]   Yao, L., Heubi, J.E., Buckley, D.D., Fierra, H., Setchell, K.D., Granholm, N.A., Tso, P., Hui, D.Y. and Woollett, L.A. (2002) Separation of Micelles and Vesicles within Lumenal Aspirates from Healthy Humans: Solubilization of Cholesterol After a Meal. Journal of Lipid Research. 43, 654-660.

[29]   Voshol, P.J., Schwarz, M., Rigotti, A., Krieger, M., Groen, A.K. and Kuipers, F. (2001) Down-Regulation of Intestinal Scavenger Receptor Class B, Type I (SR-BI) Expression in Rodents under Conditions of Deficient Bile Delivery to the Intestine. Biochemical Journal, 356, 317-325.
https://doi.org/10.1042/bj3560317

[30]   Ponz de, L.M., Loria, P., Iori, R. and Carulli, N. (1981) Cholesterol Absorption in Cirrhosis: The Role of Total and Individual Bile Acid Pool Size. Gastroenterology, 80, 1428-1437.

[31]   Moreau, R.A., Whitaker, B.D. and Hicks, K.B. (2002) Phytosterols, Phytostanols, and Their Conjugates in Foods: Structural Diversity, Quantitative Analysis, and Health-Promoting Uses. Progress in Lipid Research, 41, 457-500.
https://doi.org/10.1016/S0163-7827(02)00006-1

[32]   Altmann, S.W., Davis, H.R., Zhu, L.J., Yao, X., Hoos, L.M., Tetzloff, G., Iyer, S.P., Maguire, M., Golovko, A., Zeng, M., Wang, L., Murgolo, N. and Graziano, M.P. (2004) Niemann-Pick C1 Like 1 Protein Is Critical for Intestinal Cholesterol Absorption. Science, 303, 1201-1204.
https://doi.org/10.1126/science.1093131

[33]   Berge, K.E., Tian, H., Graf, G.A., Yu, L., Grishin, N.V., Schultz, J., Kwiterovich, P., Shan, B., Barnes, R. and Hobbs, H.H. (2000) Accumulation of Dietary Cholesterol in Sitosterolemia Caused by Mutations in Adjacent ABC Transporters. Science, 290, 1771-1775.
https://doi.org/10.1126/science.290.5497.1771

[34]   Lu, K., Lee, M.H., Hazard, S., Brooks-Wilson, A., Hidaka, H., Kojima, H., Ose, L., Stalenhoef, A.F., Mietinnen, T., Bjorkhem, I., Bruckert, E., Pandya, A., Brewer, H.B., Salen, G., Dean, M., Srivastava, A. and Patel, S.B. (2001) Two Genes That Map to the STSL Locus Cause Sitosterolemia: Genomic Structure and Spectrum of Mutations Involving Sterolin-1 and Sterolin-2, Encoded by ABCG5 and ABCG8, Respectively. American Journal of Human Genetics, 69, 278-290.
https://doi.org/10.1086/321294

[35]   Garcia-Calvo, M., Lisnock, J., Bull, H.G., Hawes, B.E., Burnett, D.A., Braun, M.P., Crona, J.H., Davis, H.R., Dean, D.C., Detmers, P.A., Graziano, M.P., Hughes, M., Macintyre, D.E., Ogawa, A., O’Neill, K.A., Iyer, S.P., Shevell, D.E., Smith, M.M., Tang, Y.S., Makarewicz, A.M., Ujjainwalla, F., Altmann, S.W., Chapman, K.T. and Thornberry, N.A. (2005) The Target of Ezetimibe Is Niemann-Pick C1-Like 1 (NPC1L1). Proceedings of the National Academy of Sciences of the United States of America, 102, 8132-8137.
https://doi.org/10.1073/pnas.0500269102

[36]   Wang, D.Q. (2007) Regulation of Intestinal Cholesterol Absorption. Annual Review of Physiology, 69, 221-248.
https://doi.org/10.1146/annurev.physiol.69.031905.160725

[37]   Iyer, S.P., Yao, X., Crona, J.H., Hoos, L.M., Tetzloff, G., Davis, H.R., Graziano, M.P. and Altmann, S.W. (2005) Characterization of the Putative Native and Recombinant Rat Sterol Transporter Niemann-Pick C1 like 1 (NPC1L1) Protein. Biochimica et Biophysica Acta, 1722, 282-292.
https://doi.org/10.1016/j.bbagen.2004.12.021

[38]   Van, H.M., Farley, C., Compton, D.S., Hoos, L.M., Smith-Torhan, A. and Davis, H.R. (2003) Ezetimibe Potently Inhibits Cholesterol Absorption but Does Not Affect Acute Hepatic or Intestinal Cholesterol Synthesis in Rats. British Journal of Pharmacology, 138, 1459-1464.
https://doi.org/10.1038/sj.bjp.0705187

[39]   Field, F.J., Watt, K. and Mathur, S.N. (2007) Ezetimibe Interferes with Cholesterol Trafficking from the Plasma Membrane to the Endoplasmic Reticulum in CaCo2 Cells. Journal of Lipid Research, 48, 1735-1745.
https://doi.org/10.1194/jlr.M700029-JLR200

[40]   Zhang, J.H., Ge, L., Qi, W., Zhang, L., Miao, H.H., Li, B.L., Yang, M. and Song, B.L. (2011) The N-Terminal Domain of NPC1L1 Protein Binds Cholesterol and Plays Essential Roles in Cholesterol Uptake. Journal of Biological Chemistry, 286, 25088-25097.
https://doi.org/10.1074/jbc.M111.244475

[41]   Calandra, S., Tarugi, P., Speedy, H.E., Dean, A.F., Bertolini, S. and Shoulders, C.C. (2011) Mechanisms and Genetic Determinants Regulating Sterol Absorption, Circulating LDL Levels, and Sterol Elimination: Implications for Classification and Disease Risk. Journal of Lipid Research, 52, 1885-1926.
https://doi.org/10.1194/jlr.R017855

[42]   Lee, M.H., Lu, K., Hazard, S., Yu, H., Shulenin, S., Hidaka, H., Kojima, H., Allikmets, R., Sakuma, N., Pegoraro, R., Srivastava, A.K., Salen, G., Dean, M. and Patel, S.B. (2001) Identification of a Gene, ABCG5, Important in the Regulation of Dietary Cholesterol Absorption. Nature Genetics, 27, 79-83.
https://doi.org/10.1038/83799

[43]   Yu, L., Hammer, R.E., Li-Hawkins, J., Von, B.K., Lutjohann, D., Cohen, J.C. and Hobbs, H.H. (2002) Disruption of ABCG5 and ABCG8 in Mice Reveals Their Crucial Role in Biliary Cholesterol Secretion. Proceedings of the National Academy of Sciences of the United States of America, 99, 16237-16242.
https://doi.org/10.1073/pnas.252582399

[44]   Plosch, T., Bloks, V.W., Terasawa, Y., Berdy, S., Siegler, K., Van Der, S.F., Kema, I.P., Groen, A.K., Shan, B., Kuipers, F. and Schwarz, M. (2004) Sitosterolemia in ABC-Transporter G5-Deficient Mice Is Aggravated on Activation of the Liver-X Receptor. Gastroenterology, 126, 290-300.
https://doi.org/10.1053/j.gastro.2003.10.074

[45]   Yu, L., Li-Hawkins, J., Hammer, R.E., Berge, K.E., Horton, J.D., Cohen, J.C. and Hobbs, H.H. (2002) Overexpression of ABCG5 and ABCG8 Promotes Biliary Cholesterol Secretion and Reduces Fractional Absorption of Dietary Cholesterol. Journal of Clinical Investigation, 110, 671-680.
https://doi.org/10.1172/JCI0216001

[46]   Yu, L., York, J., Von, B.K., Lutjohann, D., Cohen, J.C. and Hobbs, H.H. (2003) Stimulation of Cholesterol Excretion by the Liver X Receptor Agonist Requires ATP-Binding Cassette Transporters G5 and G8. Journal of Biological Chemistry, 278, 15565-15570.
https://doi.org/10.1074/jbc.M301311200

[47]   Repa, J.J., Turley, S.D., Lobaccaro, J.A., Medina, J., Li, L., Lustig, K., Shan, B., Heyman, R.A., Dietschy, J.M. and Mangelsdorf, D.J. (2000) Regulation of Absorption and ABC1-Mediated Efflux of Cholesterol by RXR Heterodimers. Science, 289, 1524-1529.
https://doi.org/10.1126/science.289.5484.1524

[48]   Ohama, T., Hirano, K., Zhang, Z., Aoki, R., Tsujii, K., Nakagawa-Toyama, Y., Tsukamoto, K., Ikegami, C., Matsuyama, A., Ishigami, M., Sakai, N., Hiraoka, H., Ueda, K., Yamashita, S. and Matsuzawa, Y. (2002) Dominant Expression of ATP-Binding Cassette Transporter-1 on Basolateral Surface of CaCo2 Cells Stimulated by LXR/RXR Ligands. Biochemical and Biophysical Research Communications, 296, 625-630.
https://doi.org/10.1016/S0006-291X(02)00853-7

[49]   Iqbal, J., Anwar, K. and Hussain, M.M. (2003) Multiple, Independently Regulated Pathways of Cholesterol Transport across the Intestinal Epithelial Cells. Journal of Biological Chemistry, 278, 31610-31620.
https://doi.org/10.1074/jbc.M301177200

[50]   Iqbal, J. and Hussain, M.M. (2005) Evidence for Multiple Complementary Pathways for Efficient Cholesterol Absorption in Mice. Journal of Lipid Research, 46, 1491-1501.
https://doi.org/10.1194/jlr.M500023-JLR200

[51]   Brunham, L.R., Kruit, J.K., Iqbal, J., Fievet, C., Timmins, J.M., Pape, T.D., Coburn, B.A., Bissada, N., Staels, B., Groen, A.K., Hussain, M.M., Parks, J.S., Kuipers, F. and Hayden, M.R. (2006) Intestinal ABCA1 Directly Contributes to HDL Biogenesis in Vivo. Journal of Clinical Investigation, 116, 1052-1062.
https://doi.org/10.1172/JCI27352

[52]   Wegner, C.J., Kim, B. and Lee, J. (2013) Trust Your Gut: Galvanizing Nutritional Interest in Intestinal Cholesterol Metabolism for Protection Against Cardiovascular Diseases. Nutrients, 5, 208-222.
https://doi.org/10.3390/nu5010208

[53]   Groen, A.K., Bloks, V.W., Bandsma, R.H., Ottenhoff, R., Chimini, G. and Kuipers, F. (2001) Hepatobiliary Cholesterol Transport Is Not Impaired in Abca1-Null Mice Lacking HDL. Journal of Clinical Investigation, 108, 843-850.
https://doi.org/10.1172/JCI200112473

[54]   Kruit, J.K., Plosch, T., Havinga, R., Boverhof, R., Groot, P.H., Groen, A.K. and Kuipers, F. (2005) Increased Fecal Neutral Sterol Loss upon Liver X Receptor Activation Is Independent of Biliary Sterol Secretion in Mice. Gastroenterology, 128, 147-156.
https://doi.org/10.1053/j.gastro.2004.10.006

[55]   Van der Velde, A.E., Vrins, C.L., van den, O.K., Kunne, C., Oude Elferink, R.P., Kuipers, F. and Groen, A.K. (2007) Direct Intestinal Cholesterol Secretion Contributes Significantly to Total Fecal Neutral Sterol Excretion in Mice. Gastroenterology, 133, 967-975.
https://doi.org/10.1053/j.gastro.2007.06.019

[56]   Mitchell, J.C., Stone, B.G., Logan, G.M. and Duane, W.C. (1991) Role of Cholesterol Synthesis in Regulation of Bile Acid Synthesis and Biliary Cholesterol Secretion in Humans. Journal of Lipid Research, 32, 1143-1149.

[57]   Van der Velde, A.E., van Dijk, T.H., Vrins, C.L., van, M.H., Havinga, R., Bijsterveld, K., Tietge, U.J., Groen, A.K. and Kuipers, F. (2009) Activation of the Liver X Receptor Stimulates Trans-Intestinal Excretion of Plasma Cholesterol. Journal of Biological Chemistry, 284, 19211-19219.
https://doi.org/10.1074/jbc.M109.014860

[58]   Vrins, C.L., van der Velde, A.E., van den, O.K., Levels, J.H., Huet, S., Oude Elferink, R.P., Kuipers, F. and Groen, A.K. (2009) Peroxisome Proliferator-Activated Receptor Delta Activation Leads to Increased Transintestinal Cholesterol Efflux. Journal of Lipid Research, 50, 2046-2054.
https://doi.org/10.1194/jlr.M800579-JLR200

[59]   Jakulj, L., Vissers, M.N., van Roomen, C.P., van der Velde, A.E., Vrins, C.L., Kunne, C., Stellaard, F., Kastelein, J.J. and Groen, A. K. (2010) Ezetimibe Stimulates Faecal Neutral Sterol Excretion Depending on ABCG8 Function in Mice. FEBS Letters, 584, 3625-3628.
https://doi.org/10.1016/j.febslet.2010.07.035

[60]   Sokolovic, M., Sokolovic, A., van Roomen, C.P., Gruber, A., Ottenhoff, R., Scheij, S., Hakvoort, T. B., Lamers, W.H. and Groen, A.K. (2010) Unexpected Effects of Fasting on Murine Lipid Homeostasis—Transcriptomic and Lipid Profiling. Journal of Hepatology, 52, 737-744.
https://doi.org/10.1016/j.jhep.2009.11.028

[61]   Van, B.A., Werder, M., Thuahnai, S.T., Han, C.H., Duong, P., Williams, D.L., Wettstein, P., Schulthess, G., Phillips, M.C. and Hauser, H. (2005) Class B Scavenger Receptor-Mediated Intestinal Absorption of Dietary Beta-Carotene and Cholesterol. Biochemistry, 44, 4517-4525.
https://doi.org/10.1021/bi0484320

[62]   Nauli, A.M., Nassir, F., Zheng, S., Yang, Q., Lo, C.M., Vonlehmden, S.B., Lee, D., Jandacek, R.J., Abumrad, N.A. and Tso, P. (2006) CD36 Is Important for Chylomicron Formation and Secretion and May Mediate Cholesterol Uptake in the Proximal Intestine. Gastroenterology, 131, 1197-1207.
https://doi.org/10.1053/j.gastro.2006.08.012

[63]   Bietrix, F., Yan, D., Nauze, M., Rolland, C., Bertrand-Michel, J., Comera, C., Schaak, S., Barbaras, R., Groen, A.K., Perret, B., Terce, F. and Collet, X. (2006) Accelerated lipid absorption in mice overexpressing intestinal SR-BI. Journal of Biological Chemistry, 281, 7214-7219.
https://doi.org/10.1074/jbc.M508868200

[64]   Hauser, H., Dyer, J.H., Nandy, A., Vega, M.A., Werder, M., Bieliauskaite, E., Weber, F.E., Compassi, S., Gemperli, A., Boffelli, D., Wehrli, E., Schulthess, G. and Phillips, M.C. (1998) Identification of a Receptor Mediating Absorption of Dietary Cholesterol in the Intestine. Biochemistry, 37, 17843-17850.
https://doi.org/10.1021/bi982404y

[65]   Wang, D.Q. and Carey, M.C. (2002) Susceptibility to Murine Cholesterol Gallstone Formation Is Not Affected by Partial Disruption of the HDL Receptor SR-BI. Biochimica et Biophysica Acta, 1583, 141-150.
https://doi.org/10.1016/S1388-1981(02)00194-4

[66]   Van der Velde, A.E., Kruit, J.K., Havinga, R., Baller, J.F., Chimini, G., Lestavel, S., Staels, B., Groot, P.H., Groen, A.K. and Kuipers, F. (2005) Reduced Cholesterol Absorption upon PPARdelta Activation Coincides with Decreased Intestinal Expression of NPC1L1. Journal of Lipid Research, 46, 526-534.
https://doi.org/10.1194/jlr.M400400-JLR200

[67]   Valasek, M.A., Clarke, S.L. and Repa, J.J. (2007) Fenofibrate Reduces Intestinal Cholesterol Absorption via PPARalpha-Dependent Modulation of NPC1L1 Expression in Mouse. Journal of Lipid Research, 48, 2725-2735.
https://doi.org/10.1194/jlr.M700345-JLR200

[68]   Huff, M.W., Pollex, R.L. and Hegele, R.A. (2006) NPC1L1: Evolution from Pharmacological Target to Physiological Sterol Transporter. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 2433-2438.
https://doi.org/10.1161/01.ATV.0000245791.53245.ee

[69]   Yu, L., Bharadwaj, S., Brown, J.M., Ma, Y., Du, W., Davis, M.A., Michaely, P., Liu, P., Willingham, M.C. and Rudel, L.L. (2006) Cholesterol-Regulated Translocation of NPC1L1 to the Cell Surface Facilitates Free Cholesterol Uptake. Journal of Biological Chemistry, 281, 6616-6624.
https://doi.org/10.1074/jbc.M511123200

[70]   Gylling, H. and Miettinen, T.A. (1996) Cholesterol Absorption and Lipoprotein Metabolism in Type II Diabetes Mellitus with and without coronary Artery Disease. Atherosclerosis, 126, 325-332.
https://doi.org/10.1016/0021-9150(96)05930-8

[71]   Lally, S., Tan, C.Y., Owens, D. and Tomkin, G.H. (2006) Messenger RNA Levels of Genes Involved in Dysregulation of Postprandial Lipoproteins in Type 2 Diabetes: The Role of Niemann-Pick C1-Like 1, ATP-Binding Cassette, Transporters G5 and G8, and of Microsomal Triglyceride Transfer Protein. Diabetologia, 49, 1008-1016.
https://doi.org/10.1007/s00125-006-0177-8

[72]   Janowski, B.A., Grogan, M.J., Jones, S.A., Wisely, G.B., Kliewer, S.A., Corey, E.J. and Mangelsdorf, D.J. (1999) Structural Requirements of Ligands for the Oxysterol Liver X Receptors LXRalpha and LXRbeta. Proceedings of the National Academy of Sciences of the United States of America, 96, 266-271.
https://doi.org/10.1073/pnas.96.1.266

[73]   Calkin, A.C. and Tontonoz, P. (2010) Liver X Receptor Signaling Pathways and Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 1513-1518.
https://doi.org/10.1161/ATVBAHA.109.191197

[74]   Edmondson, A.C., Braund, P.S., Stylianou, I.M., Khera, A.V., Nelson, C.P., Wolfe, M.L., Derohannessian, S.L., Keating, B.J., Qu, L., He, J., Tobin, M.D., Tomaszewski, M., Baumert, J., Klopp, N., Doring, A., Thorand, B., Li, M., Reilly, M.P., Koenig, W., Samani, N.J. and Rader, D.J. (2011) Dense Genotyping of Candidate Gene Loci Identifies Variants Associated with High-Density Lipoprotein Cholesterol. Circulation: Cardiovascular Genetics, 4, 145-155.
https://doi.org/10.1161/circgenetics.110.957563

[75]   Repa, J.J., Berge, K.E., Pomajzl, C., Richardson, J.A., Hobbs, H. and Mangelsdorf, D.J. (2002) Regulation of ATP-Binding Cassette Sterol Transporters ABCG5 and ABCG8 by the liver X Receptors Alpha and Beta. Journal of Biological Chemistry, 277, 18793-18800.
https://doi.org/10.1074/jbc.M109927200

[76]   Lee, R.G., Willingham, M.C., Davis, M.A., Skinner, K.A. and Rudel, L.L. (2000) Differential Expression of ACAT1 and ACAT2 among Cells within Liver, Intestine, Kidney, and Adrenal of Nonhuman Primates. Journal of Lipid Research, 41, 1991-2001.

[77]   Chang, C.C., Huh, H.Y., Cadigan, K.M. and Chang, T.Y. (1993) Molecular Cloning and Functional Expression of Human Acyl-Coenzyme A: Cholesterol Acyltransferase cDNA in Mutant Chinese Hamster Ovary Cells. Journal of Biological Chemistry, 268, 20747-20755.

[78]   Meiner, V., Tam, C., Gunn, M.D., Dong, L.M., Weisgraber, K.H., Novak, S., Myers, H.M., Erickson, S.K. and Farese, R.V. (1997) Tissue Expression Studies on the Mouse Acyl-CoA: Cholesterol Acyltransferase Gene (Acact): Findings Supporting the Existence of Multiple Cholesterol Esterification Enzymes in Mice. Journal of Lipid Research, 38, 1928-1933.

[79]   Anderson, R.A., Joyce, C., Davis, M., Reagan, J.W., Clark, M., Shelness, G.S. and Rudel, L.L. (1998) Identification of a form of Acyl-CoA: Cholesterol Acyltransferase Specific to Liver and Intestine in Nonhuman Primates. Journal of Biological Chemistry, 273, 26747-26754.
https://doi.org/10.1074/jbc.273.41.26747

[80]   Cases, S., Novak, S., Zheng, Y.W., Myers, H.M., Lear, S.R., Sande, E., Welch, C.B., Lusis, A.J., Spencer, T.A., Krause, B.R., Erickson, S.K. and Farese, R.V. (1998) ACAT-2, a Second Mammalian Acyl-CoA: Cholesterol Acyltransferase. Its Cloning, Expression, and Characterization. Journal of Biological Chemistry, 273, 26755-26764.
https://doi.org/10.1074/jbc.273.41.26755

[81]   Buhman, K.K., Accad, M., Novak, S., Choi, R.S., Wong, J.S., Hamilton, R.L., Turley, S. and Farese, R.V. (2000) Resistance to Diet-Induced Hypercholesterolemia and Gallstone Formation in ACAT2-Deficient Mice. Nature Medicine, 6, 1341-1347.
https://doi.org/10.1038/82153

[82]   Iqbal, J., Rudel, L.L. and Hussain, M.M. (2008) Microsomal Triglyceride Transfer Protein Enhances Cellular Cholesteryl Esterification by Relieving Product Inhibition. Journal of Biological Chemistry, 283, 19967-19980.
https://doi.org/10.1074/jbc.M800398200

[83]   Hussain, M.M., Fatma, S., Pan, X. and Iqbal, J. (2005) Intestinal Lipoprotein Assembly. Current Opinion in Lipidology, 16, 281-285.
https://doi.org/10.1097/01.mol.0000169347.53568.5a

[84]   Clark, S.B. and Tercyak, A.M. (1984) Reduced Cholesterol Transmucosal Transport in Rats with Inhibited Mucosal Acyl CoA: Cholesterol Acyltransferase and Normal Pancreatic Function. Journal of Lipid Research, 25, 148-159.

[85]   Sittiwet, C., Gylling, H., Hallikainen, M., Pihlajamaki, J., Moilanen, L., Laaksonen, D.E., Niskanen, L., Agren, J.J., Laakso, M. and Miettinen, T.A. (2007) Cholesterol Metabolism and Non-Cholesterol Sterol Distribution in Lipoproteins of Type 1 Diabetes: The Effect of Improved Glycemic Control. Atherosclerosis, 194, 465-472.
https://doi.org/10.1016/j.atherosclerosis.2006.08.044

[86]   Feingold, K.R., Wiley, M.H., MacRae, G., Moser, A.H., Lear, S.R. and Siperstein, M.D. (1982) The Effect of Diabetes Mellitus on Sterol Synthesis in the Intact Rat. Diabetes, 31, 388-395.
https://doi.org/10.2337/diab.31.5.388

[87]   Feingold, K.R., Lear, S.R. and Moser, A.H. (1984) De Novo Cholesterol Synthesis in Three Different Animal Models of Diabetes. Diabetologia, 26, 234-239.
https://doi.org/10.1007/BF00252414

[88]   Nakayama, H. and Nakagawa, S. (1977) Influence of Streptozotocin Diabetes on Intestinal 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Activity in the Rat. Diabetes, 26, 439-444.
https://doi.org/10.2337/diab.26.5.439

[89]   Easom, R.A. and Zammit, V.A. (1985) Effects of Diabetes on the Expressed and Total Activities of 3-Hydroxy-3-Methylglutaryl-CoA Reductase in Rat Liver in Vivo. Reversal by Insulin Treatment. Biochemical Journal, 230, 747-752.
https://doi.org/10.1042/bj2300747

[90]   Miettinen, T.A. and Gylling, H. (2002) Ineffective Decrease of Serum Cholesterol by Simvastatin in a Subgroup of Hypercholesterolemic Coronary Patients. Atherosclerosis, 164, 147-152.
https://doi.org/10.1016/S0021-9150(02)00054-0

[91]   Hawes, B.E., O’neill, K.A., Yao, X., Crona, J.H., Davis, H.R., Graziano, M.P. and Altmann, S.W. (2007) In Vivo Responsiveness to Ezetimibe Correlates with Niemann-Pick C1 Like-1 (NPC1L1) Binding Affinity: Comparison of Multiple Species NPC1L1 Orthologs. Molecular Pharmacology, 71, 19-29.
https://doi.org/10.1124/mol.106.027896

[92]   Davis, H.R., Compton, D.S., Hoos, L. and Tetzloff, G. (2001) Ezetimibe, a Potent Cholesterol Absorption Inhibitor, Inhibits the Development of Atherosclerosis in ApoE Knockout Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 21, 2032-2038.
https://doi.org/10.1161/hq1201.100260

[93]   Davis, H.R., Hoos, L.M., Tetzloff, G., Maguire, M., Zhu, L.J., Graziano, M.P. and Altmann, S.W. (2007) Deficiency of Niemann-Pick C1 Like 1 Prevents Atherosclerosis in ApoE-/-Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 27, 841-849.
https://doi.org/10.1161/01.ATV.0000257627.40486.46

[94]   Sudhop, T., Reber, M., Tribble, D., Sapre, A., Taggart, W., Gibbons, P., Musliner, T., Von, B.K. and Lutjohann, D. (2009) Changes in Cholesterol Absorption and Cholesterol Synthesis Caused by Ezetimibe and/or Simvastatin in Men. Journal of Lipid Research, 50, 2117-2123.
https://doi.org/10.1194/jlr.P900004-JLR200

[95]   Davis, H.R. and Veltri, E.P. (2007) Zetia: inhibition of Niemann-Pick C1 like 1 (NPC1L1) to Reduce Intestinal Cholesterol Absorption and Treat Hyperlipidemia. Journal of Atherosclerosis and Thrombosis, 14, 99-108.
https://doi.org/10.5551/jat.14.99

[96]   Gleeson, A., Owens, D., Collins, P., Johnson, A. and Tomkin, G.H. (2000) The Relationship between Cholesterol Absorption and Intestinal Cholesterol Synthesis in the Diabetic Rat Model. International Journal of Experimental Diabetes Research, 1, 203-210.
https://doi.org/10.1155/EDR.2000.203

[97]   Deushi, M., Nomura, M., Kawakami, A., Haraguchi, M., Ito, M., Okazaki, M., Ishii, H. and Yoshida, M. (2007) Ezetimibe Improves Liver Steatosis and Insulin Resistance in Obese Rat Model of Metabolic Syndrome. FEBS Letters, 581, 5664-5670.
https://doi.org/10.1016/j.febslet.2007.11.023

[98]   Nomura, M., Ishii, H., Kawakami, A. and Yoshida, M. (2009) Inhibition of Hepatic Niemann-Pick C1-Like 1 Improves Hepatic Insulin Resistance. American Journal of Physiology, Endocrinology and Metabolism, 297, E1030-E1038.
https://doi.org/10.1152/ajpendo.00343.2009

[99]   Labonte, E.D., Camarota, L.M., Rojas, J.C., Jandacek, R.J., Gilham, D.E., Davies, J.P., Ioannou, Y. A., Tso, P., Hui, D.Y. and Howles, P.N. (2008) Reduced Absorption of Saturated Fatty Acids and Resistance to Diet-Induced Obesity and Diabetes by Ezetimibe-Treated and Npc1l1-/-Mice. American Journal of Physiology, Gastrointestinal and Liver Physiology, 295, G776-G783.
https://doi.org/10.1152/ajpgi.90275.2008

[100]   Bloks, V.W., Bakker-Van Waarde, W.M., Verkade, H.J., Kema, I.P., Wolters, H., Vink, E., Groen, A. K. and Kuipers, F. (2004) Down-Regulation of Hepatic and Intestinal ABCG5 and ABCG8 Expression Associated with Altered Sterol Fluxes in Rats with Streptozotocin-Induced Diabetes. Diabetologia, 47, 104-112.
https://doi.org/10.1007/s00125-003-1261-y

[101]   Lally, S., Owens, D. and Tomkin, G.H. (2007) The Different Effect of Pioglitazone as Compared to Insulin on Expression of Hepatic and Intestinal Genes Regulating Post-Prandial Lipoproteins in Diabetes. Atherosclerosis, 193, 343-351.
https://doi.org/10.1016/j.atherosclerosis.2006.09.031

[102]   Guardamagna, O., Abello, F., Baracco, V., Federici, G., Bertucci, P., Mozzi, A., Mannucci, L., Gnasso, A. and Cortese, C. (2011) Primary Hyperlipidemias in Children: Effect of Plant Sterol Supplementation on Plasma Lipids and Markers of Cholesterol Synthesis and Absorption. Acta Diabetologica, 48, 127-133.
https://doi.org/10.1007/s00592-010-0233-1

[103]   John, S., Sorokin, A.V. and Thompson, P.D. (2007) Phytosterols and Vascular Disease. Current Opinion in Lipidology, 18, 35-40.
https://doi.org/10.1097/MOL.0b013e328011e9e3

[104]   Thompson, G.R. and Grundy, S.M. (2005) History and Development of Plant Sterol and Stanol Esters for Cholesterol-Lowering Purposes. American Journal of Cardiology, 96, 3D-9D.
https://doi.org/10.1016/j.amjcard.2005.03.013

[105]   Weingartner, O., Lutjohann, D., Ji, S., Weisshoff, N., List, F., Sudhop, T., Von, B.K., Gertz, K., Konig, J., Schafers, H.J., Endres, M., Bohm, M. and Laufs, U. (2008) Vascular Effects of Diet Supplementation with Plant Sterols. Journal of the American College of Cardiology, 51, 1553-1561.
https://doi.org/10.1016/j.jacc.2007.09.074

[106]   Helske, S., Miettinen, T., Gylling, H., Mayranpaa, M., Lommi, J., Turto, H., Werkkala, K., Kupari, M. and Kovanen, P.T. (2008) Accumulation of Cholesterol Precursors and Plant Sterols in Human Stenotic Aortic Valves. Journal of Lipid Research, 49, 1511-1518.
https://doi.org/10.1194/jlr.M800058-JLR200

 
 
Top