Back
 JAMP  Vol.5 No.2 , February 2017
Travelling Waves in Space-Fractional Nonlinear Diffusion with Linear Convection
Abstract: In this paper we investigate anomalous diffusion coupled with linear convection, using fractional calculus to describe the anomalous associated memory effects in diffusive term. We get an explicit travelling wave solution, wavefront, with finite propagation. We comment the properties of the solution, including the stationary case.
Cite this paper: Costa, F. and Araujo Pereira, M. (2017) Travelling Waves in Space-Fractional Nonlinear Diffusion with Linear Convection. Journal of Applied Mathematics and Physics, 5, 462-468. doi: 10.4236/jamp.2017.52041.
References

[1]   Machado, J.A.T., Kiryakova, V. and Mainardi, F. (2010) A Poster about the Recent History of Fractional Calculus. Fractional Calculus Applied & Analysis, 13, 329-334.

[2]   Machado, J.A.T., Kiryakova, V. and Mainardi, F. (2010) A Poster about the Old History of Fractional Calculus. Fractional Calculus & Applied Analysis, 13, 447-454.

[3]   Machado, J.A.T., Kiryakova, V. and Mainardi, F. (2011) Recent History of Fractional Calculus. Communications in Nonlinear Science and Numerical Simulation, 16, 1140-1153.
https://doi.org/10.1016/j.cnsns.2010.05.027

[4]   Capelas de Oliveira, E. and Machado, J.A.T. (2014) A Review of Definitions For Fractional Derivatives and Integral. Mathematical Problems in Engineering, 2014, 238459.
https://doi.org/10.1155/2014/238459

[5]   Machado, J.A.T., Mainardi, F. and Kiryakova, V. (2015) Fractional Calculus: Quo vadimus? (Where Are We Going?). Fractional Calculus and Applied Analysis, 18, 495-526.
https://doi.org/10.1515/fca-2015-0031

[6]   Ortigueira, M.D. and Machado, J.A.T. (2015) What Is a Fractional Derivative? Journal of Computational Physics, 293, 4-13.
https://doi.org/10.1016/j.jcp.2014.07.019

[7]   Sabatier, J., Merveillaut, M., Malti, R. and Oustaloup, A. (2010) How to Impose Physically Coherent Initial Conditions to a Fractional System? Communications in Nonlinear Science and Numerical Simulation, 15, 1318-1326.
https://doi.org/10.1016/j.cnsns.2009.05.070

[8]   Costa, F.S. and Capelas de Oliveira, E. (2012) Fractional Wave-Diffusion Equation with Periodic Conditions. Journal of Mathematical Physics, 53, 123520.
https://doi.org/10.1063/1.4769270

[9]   Costa, F.S., Grigoleto, E.C. and Capelas de Oliveira, E. (2015) Slowing-Down of Neutrons: A Fractional Model. Communications in Applied and Industrial Mathematics, 6, e-538.

[10]   Jafari, H. and Momani, S. (2007) Solving Fractional Diffusion and wave Equations by Modified Homotopy Perturbation Method. Physics Letters A, 370, 388-396.
https://doi.org/10.1016/j.physleta.2007.05.118

[11]   Mehdi Safari, M. and Danesh, M. (2011) Application of Adomian’s Decomposition Method for the Analytical Solution of Space Fractional Diffusion Equation. Advances in Pure Mathematics, 1, 345-350.
https://doi.org/10.4236/apm.2011.16062

[12]   Luncho, Y., Mainardi, F. and Povstenko, Y. (2013) Propagation Speed of the Maximum of the Fundamental Solution to the Fractional Diffusion-Wave Equation. Computers and Mathematics with Applications, 66, 774-784.
https://doi.org/10.1016/j.camwa.2013.01.005

[13]   Plociniczak, L. (2015) Analytical Studies of a Time-Fractional Porous Medium Equation. Derivation, Approximation and Applications. Communications in Nonlinear Science and Numerical Simulation, 24, 169-183.
https://doi.org/10.1016/j.cnsns.2015.01.005

[14]   Costa, F.S., Marão, J.A.P.F., Alves Soares, J.C. and Capelas de Oliveira, E. (2015) Similarity Solution to Fractional Nonlinear Space-Time Diffusion-Wave Equation. Journal of Mathematical Physics, 56, Article ID: 033507.
https://doi.org/10.1063/1.4915293

[15]   Gilding, B.H. and Kesner, R. (2005) A Fisher/Kpp-Type Equation with Density-Dependent Diffusion and Convection: Travelling-Wave Solutions. Journal of Physics A: Mathematical and General, 38, 3367-3379.
https://doi.org/10.1088/0305-4470/38/15/009

[16]   Cohen, I. Golding, I., Kozlovsky, Y. and Ron, I.G. (1999) Continuous and Discrete Models of Cooperation in Complex Bacterial Colonies. Fractals, 7, 235-247.

[17]   Cuesta, C.M. (2015) A Non-Local Kdv-Burgers Equation: Numerical Study of Travelling Waves. Communications in Applied and Industrial Mathematics, 6, e-533.

[18]   Chen, M. and Deng, W. (2014) A Second-Order Numerical Method for Two-Dimensional Two-Sided Space Fractional Convection Diffusion Equation. Applied Mathematical Modelling, 38, 3244-3259.
https://doi.org/10.1016/j.apm.2013.11.043

[19]   Zhang, J. and Zhang, J. (2015) Symmetries Analysis for Time-Fractional Convection-Diffusion Equation. arXiv preprint arXiv:1512.01319.

[20]   Camargo, R.F. and Capelas de Oliveira, E. (2015) Cálculo fracionário. Livraria da Física, São Paulo.

[21]   Mainardi, F., Luchko, Y. and Pagnini, G. (2001) The Fundamental Solution of the Space-Time Fractional Diffusion Equation Fractional Calculus Applied and Analysis, 4, 153-192.

[22]   Grigoletto, E.C. and Capelas de Oliveira, E. (2013) Fractional Versions of the Fundamental Theorem of Calculus. Applied Mathematics, 4, 23-33.
https://doi.org/10.4236/am.2013.47A006

[23]   Biler, P., Imbert, C. and Karch, G. (2015) The Nonlocal Porous Medium Equation: Barenblatt Profiles and Other Weak Solutions. Archive for Rational Mechanics and Analysis, 215, 497-529.
https://doi.org/10.1007/s00205-014-0786-1

[24]   Pablo, A., Quirós, F., Rodriguíguez, A. and Vázquez, J.L. (2011) A Fractional Porous Medium Equation. Advances in Mathematics, 226, 1378-1409.
https://doi.org/10.1016/j.aim.2010.07.017

[25]   Huang, Y. (2014) Explicit Barenblatt Profiles for Fractional Porous Medium Equations. Bulletin London Mathematical Society, 46, 857-869.
https://doi.org/10.1112/blms/bdu045

[26]   Djordjevic, V.D. and Atanackovic, T.M. (2008) Similarity Solutions to Nonlinear Heat Conduction and Burgers/Korteweg-Devries Fractional Equations. Journal of Computational and Applied Mathematics, 222, 701-714.
https://doi.org/10.1016/j.cam.2007.12.013

[27]   Gilding, B. and Kersner, R. (2004) Travelling Waves in Nonlinear Diffusion-Convection Reaction. Birkhäuser, Basel.
https://doi.org/10.1007/978-3-0348-7964-4

[28]   Pablo, A. and Sánchez, A. (2000) Global Travelling Waves in Reaction-Convection-Diffusion Equations. Journal of Differential Equations, 165, 377-413.
https://doi.org/10.1006/jdeq.2000.3781

 
 
Top