Back
 IJCM  Vol.8 No.2 , February 2017
miR-141-3p Suppresses Expression of Androgen Receptors and Functions as a Tumor Suppressor Gene in Prostate Carcinogenesis
Abstract: Background: Prostate cancer (PCa) is a leading cause of tumor mortality in Western societies. In China, the PCa mortality rate is increasing yearly. Androgen receptors (ARs) and microRNAs (miRNAs) play central roles in prostate carcinogenesis and progression. Methods: To characterize the underlying molecular mechanisms, we compared the miRNA profiles of early PCa (G ≤ 7), advanced PCa (G > 7) and non-tumor prostate tissues using deep-sequencing. The target genes of differentially expressed miRNAs were predicted by bioinformatics analysis and confirmed by luciferase reporter assays and Western blot (WB) and quantitative reverse transcription-PCR (qRT-PCR) analyses. Finally, we performed in vitro functional studies by inducing or inhibiting miR-141-3p expression using an artificial mimic or inhibitor. Results: A computational search implicated the open reading frame (ORF) of AR mRNA as a potential miR-141-3p target site. The qRT-PCR, WB and luciferase reporter assays revealed a reverse regulatory effect of miR-141-3p on AR. Mutation of the potential miR-141-3p binding site in the AR ORF resulted in a loss of responsiveness to the corresponding miRNA. Moreover, miR-141-3p expression levels were unchanged in early PCas, but were obviously increased in advanced PCas. MiR-141-3p overexpression inhibited RWPE-1 cell proliferation, mobility, and prohibited the entry of cells into the G2-S-M phase; miR-141-3p inhibition had the inverse effects. At the same time, we tested miR-141-3p’s functions in PC-3 and VCaP prostate cancer cell lines. Conclusions: Taken together, our results indicate that miR-141-3p targets AR and its downstream signaling pathways, and functions as a tumor suppressor miR in PCa carcinogenesis by suppressing cell growth and mobility, but the effect is not significant in maglinant PCas. MiR-141-3p is implicated as a novel therapeutic target for early PCa.
Cite this paper: Song, C. , Chen, H. , Wang, T. , Ru, G. , Ding, Q. and Yang, W. (2017) miR-141-3p Suppresses Expression of Androgen Receptors and Functions as a Tumor Suppressor Gene in Prostate Carcinogenesis. International Journal of Clinical Medicine, 8, 55-72. doi: 10.4236/ijcm.2017.82006.
References

[1]   Carlsson, S., Vickers, A.J., Roobol, M., Eastham, J., Scardino, P., Lilja, H. and Hugosson, J. (2012) Prostate Cancer Screening: Facts, Statistics, and Interpretation in Response to the US Preventive Services Task Force Review. Journal of Clinical Oncology, 30, 2581-2584.
https://doi.org/10.1200/jco.2011.40.4327

[2]   Siegel, R., Naishadham, D. and Jemal, A. (2013) Cancer Statistics, 2013. CA: A Cancer Journal for Clinicians, 63, 11-30.
https://doi.org/10.3322/caac.21166

[3]   Chun, J., Huan, C., Chao, Y.X. and Guo, M.R. (2014) Uncovering the Roles of miRNAs and Their Relationship with Androgen Receptor in Prostate Cancer. IUBMB Life, 66, 379-386.
https://doi.org/10.1002/iub.1281

[4]   Westermann, A.M., Schmidt, D., Holdenrieder, S., Moritz, R., Semjonow, A., Schmidt, M., Kristiansen, G., Müller, S.C. and Ellinger, J. (2014) Serum microRNAs as Biomarkers in Patients Undergoing Prostate Biopsy: Results from a Prospective Multi-Center Study. Anticancer Research, 34, 665-669.

[5]   Zhang, H.L., Qin, X.J., Cao, D.L., Zhu, Y., Yao, X.D., Zhang, S.L., Dai, B. and Ye, D.W. (2013) An Elevated Serum miR-141 Level in Patients with Bone-Metastatic Prostate Cancer Is Correlated with More Bone Lesions. Asian Journal of Andrology, 15, 231-235.
https://doi.org/10.1038/aja.2012.116

[6]   Nguyen, H.C., Xie, W., Yang, M., Hsieh, C.L., Drouin, S., Lee, G.S. and Kantoff, P.W. (2013) Expression Differences of Circulating microRNAs in Metastatic Castration Resistant Prostate Cancer and Low-Risk, Localized Prostate Cancer. Prostate, 73, 346-354.
https://doi.org/10.1002/pros.22572

[7]   Selth, L.A., Townley, S., Gillis, J.L., Ochnik, A.M., Murti, K., Macfarlane, R.J., Chi, K.N., Marshall, V.R., Tilley, W.D. and Butler, L.M. (2012) Discovery of Circulating microRNAs Associated with Human Prostate Cancer Using Amouse Model of Disease. International Journal of Cancer, 131, 652-661.
https://doi.org/10.1002/ijc.26405

[8]   Mitchell, P.S., Parkin, R.K., Kroh, E.M., Fritz, B.R., Wyman, S.K., Pogosova-Agadjanyan, E.L., Peterson, A., Noteboom, J., O’Briant, K.C., Allen, A., Lin, D.W., Urban, N., Drescher, C.W., Knudsen, B.S., Stirewalt, D.L., Gentleman, R., Vessella, R.L., Nelson, P.S., Martin, D.B. and Tewari, M. (2008) Circulating micrornas as Stable Blood-Based Markers for Cancer Detection. Proceedings of the National Academy of Sciences of the United States of America, 105, 10513-10518.
https://doi.org/10.1073/pnas.0804549105

[9]   Song, C., Chen, H., Wang, T., Zhang, W., Ru, G. and Lang, J. (2015) Expression Profile Analysis of microRNAs in Prostate Cancer by Next-Generation Sequencing. Prostate, 75, 500-516.
https://doi.org/10.1002/pros.22936

[10]   Bryant, R.J., Pawlowski, T., Catto, J.W., Marsden, G., Vessella, R.L., Rhees, B., Kuslich, C., Visakorpi, T. and Hamdy, F.C. (2012) Changes in Circulating microRNA Levels Associated with Prostate Cancer. British Journal of Cancer, 106, 768-774.
https://doi.org/10.1038/bjc.2011.595

[11]   Marc, R., Peter, S., Matthias, H. and Robert, G. (2004) Fast and Effective Prediction of microRNA/Target Duplexes. RNA, 10, 1507-1517.
https://doi.org/10.1261/rna.5248604

[12]   Waltering, K.K., Porkka, K.P., Jalava, S.E., Urbanucci, A., Kohonen, P.J., Latonen, L.M., Kallioniemi, O.P., Jenster, G. and Visakorpi, T. (2011) Androgen Regulation of Micro-RNAs in Prostate Cancer. Prostate, 71, 604-614.
https://doi.org/10.1002/pros.21276

[13]   Xiao, J., Gong, A.Y., Eischeid, A.N., Chen, D., Deng, C., Young, C.Y. and Chen, X.M. (2012) MiR-141 Modulates Androgen Receptor Transcriptional Activity in Human Prostate Cancer Cells through Targeting the Small Heterodimer Partner Protein. Prostate, 72, 1514-1522.
https://doi.org/10.1002/pros.22501

[14]   Wang, C., Ouyang, Y., Lu, M., Wei, J. and Zhang, H. (2015) MiR-141-3p Regulates the Expression of Androgen Receptor by Targeting Its 3’UTR in Prostate Cancer LNCaP Cells. Chinese Journal of Cellular and Molecular Immunology, 31, 736-739.

[15]   Hizir, M.S., Balcioglu, M., Rana, M., Robertson, N.M. and Yigit, M.V. (2014) Simultaneous Detection of Circulating on comiRs from Body Fluids for Prostate Cancer Staging Using Nanographene Oxide. ACS Applied Materials & Interfaces, 6, 14772-14778.

[16]   Ratert, N., Meyer, H.A., Jung, M., Lioudmer, P., Mollenkopf, H.J., Wagner, I., Miller, K., Kilic, E., Erbersdobler, A., Weikert, S. and Jung, K. (2013) MiRNA Profiling Identifies Candidate Mirnas for Bladder Cancer Diagnosis and Clinical Outcome. Journal of Molecular Diagnostics, 15, 695-705.
https://doi.org/10.1016/j.jmoldx.2013.05.008

[17]   Kriebel, S., Schmidt, D., Holdenrieder, S., Goltz, D., Kristiansen, G., Moritz, R., Fisang, C., Müller, S.C. and Ellinger, J. (2015) Analysis of Tissue and Serum microRNA Expression in Patients with Upper Urinary Tract Urothelial Cancer. PLoS ONE, 10, e0117284.
https://doi.org/10.1371/journal.pone.0117284

[18]   Chen, L., Li, Y., Fu, Y., Peng, J., Mo, M.H., Stamatakos, M., Teal, C.B., Brem, R.F., Stojadinovic, A., Grinkemeyer, M., McCaffrey, T.A., Man, Y.G. and Fu, S.W. (2013) Role of Deregulated microRNAs in Breast Cancer Progression Using FFPE Tissue. PLoS ONE, 8, e54213.
https://doi.org/10.1371/journal.pone.0054213

[19]   Madhavan, D., Zucknick, M., Wallwiener, M., Cuk, K., Modugno, C., Scharpff, M., Schott, S., Heil, J., Turchinovich, A., Yang, R., Benner, A., Riethdorf, S., Trumpp, A., Sohn, C., Pantel, K., Schneeweiss, A. and Burwinkel, B. (2012) Circulating miRNAs as Surrogate Markers for Circulating Tumor Cells and Prognostic Markers in Metastatic Breast Cancer. Clinical Cancer Research, 18, 5972-5982.
https://doi.org/10.1158/1078-0432.CCR-12-1407

[20]   Nam, E.J., Yoon, H., Kim, S.W., Kim, H., Kim, Y.T., Kim, J.H., Kim, J.W. and Kim, S. (2008) MicroRNA Expression Profiles in Serous Ovarian Carcinoma. Clinical Cancer Research, 14, 2690-2695.
https://doi.org/10.1158/1078-0432.CCR-07-1731

[21]   Lee, T.S., Jeon, H.W., Kim, Y.B., Kim, Y.A., Kim, M.A. and Kang, S.B. (2013) Aberrant microRNA Expression in Endometrial Carcinoma Using Formalin-Fixed Paraffin-Embedded (FFPE) Tissues. PLoS ONE, 8, e81421.
https://doi.org/10.1371/journal.pone.0081421

[22]   Meng, F., Henson, R., Lang, M., Wehbe, H., Maheshwari, S., Mendell, J.T., Jiang, J., Schmittgen, T.D. and Patel, T. (2006) Involvement of Human Micro-RNA in Growth and Response to Chemotherapy in Human Cholangio-Carcinoma Cell Lines. Gastroenterology, 130, 2113-2129.
https://doi.org/10.1053/j.gastro.2006.02.057

[23]   Yin, J., Bai, Z., Song, J., Yang, Y., Wang, J., Han, W., Zhang, J., Meng, H., Ma, X., Yang, Y., Wang, T., Li, W. and Zhang, Z. (2014) Differential Expression of Serum miR-126, miR-141 and miR-21 as Novel Biomarkers for Early Detection of Liver Metastasis in Colorectal Cancer. Chinese Journal of Cancer Research, 26, 95-103.

[24]   Liu, X.G., Zhu, W.Y., Huang, Y.Y., Ma, L.N., Zhou, S.Q., Wang, Y.K., Zeng, F., Zhou, J.H. and Zhang, Y.K. (2012) High Expression of Serum miR-21 and Tumor miR-200c Associated with Poor Prognosis in Patients with Lung Cancer. Medical Oncology, 29, 618-626.
https://doi.org/10.1007/s12032-011-9923-y

[25]   Zhou, X., Wang, Y., Shan, B., Han, J., Zhu, H., Lv, Y., Fan, X., Sang, M., Liu, X.D. and Liu, W. (2015) The Downregulation of miR-200c/141 Promotes ZEB1/2 Expression and Gastric Cancer Progression. Med-ical Oncology, 32, 428.
https://doi.org/10.1007/s12032-014-0428-3

[26]   Tan, Y., Ge, G., Pan, T., Wen, D., Chen, L., Yu, X., Zhou, X. and Gan, J. (2014) A Serum microRNA Panel as Potential Biomarkers for Hepatocellular Carcinoma Related with Hepatitis B Virus. PLoS ONE, 9, e107986.
https://doi.org/10.1371/journal.pone.0107986

[27]   Yeh, T.S., Wang, F., Chen, T.C., Yeh, C.N., Yu, M.C., Jan, Y.Y. and Chen, M.F. (2014) Expression Profile of microRNA-200 Family in Hepatocellular Carcinoma with Bile Duct Tumor Thrombus. Annals of Surgery, 259, 346-354.
https://doi.org/10.1097/SLA.0000000000000223

[28]   Chen, X., Wang, X., Ruan, A., Han, W., Zhao, Y., Lu, X., Xiao, P., Shi, H., Wang, R., Chen, L., Chen, S., Du, Q., Yang, H. and Zhang, X. (2014) MiR-141 Is a Key Regulator of Renal Cell Carcinoma Proliferation and Metastasis by Controlling EphA2 Expression. Clinical Cancer Research, 20, 2617-2630.
https://doi.org/10.1158/1078-0432.CCR-13-3224

[29]   Luo, G., Long, J., Cui, X., Xiao, Z., Liu, Z., Shi, S., et al. (2013) Highly Lymphatic Metastatic Pancreatic Cancer Cells Possess Stem Cell-Like Properties. International Journal of Oncology, 42, 979-984.

[30]   Amaral, F.C., Torres, N., Saggioro, F., Neder, L., Machado, H.R., Silva, W.A., Moreira, A.C. and Castro, M. (2009) MicroRNAs Differentially Expressed in ACTH-Secreting Pituitary Tumors. Journal of Clinical Endocrinology & Metabolism, 94, 320-323.
https://doi.org/10.1210/jc.2008-1451

[31]   Campanini, M.L., Colli, L.M., Paixao, B.M., Cabral, T.P., Amaral, F.C., Machado, H.R., Neder, L.S., Saggioro, F., Moreira, A.C., Antonini, S.R. and de Castro, M. (2010) CTNNB1 Gene Mutations, Pituitary Transcription Factors, and MicroRNA Expression Involvement in the Pathogenesis of Adamantinomatous. Hormones and Cancer, 1, 187-196.
https://doi.org/10.1007/s12672-010-0041-7

[32]   Nurul-Syakima, A.M., Yoke-Kqueen, C., Sabariah, A.R., Shiran, M.S., Singh, A. and Learn-Han, L. (2011) Differential microRNA Expression and Identification of Putative miRNA Targets and Pathways in Head and Neck Cancers. International Journal of Molecular Medicine, 28, 327-336.

[33]   Xu, H., Mei, Q., Xiong, C. and Zhao, J. (2014) Tumor-Suppressing Effects of miR-141 in Human Osteosarcoma. Cell Biochemistry and Biophysics, 69, 319-325.
https://doi.org/10.1007/s12013-013-9801-7

[34]   Sandoval, J., Díaz-Lagares, A., Salgado, R., Servitje, O., Climent, F., Ortiz-Romero, P.L., Pérez-Ferriols, A., Garcia-Muret, M.P., Estrach, T., Garcia, M., Nonell, L., Esteller, M., Pujol, R.M., Espinet, B. and Gallardo, F. (2015) MicroRNA Expression Profiling and DNA Methylation Signature for Deregulated MicroRNA in Cutaneous T-Cell Lymphoma. Journal of Investigative Dermatology, 135, 1128-1137.
https://doi.org/10.1038/jid.2014.487

 
 
Top