MSA  Vol.8 No.2 , February 2017
Fabrication of Perovskite-Type Photovoltaic Devices with Polysilane Hole Transport Layers
Abstract: Perovskite-type photovoltaic devices with polysilane hole transport layers were fabricated by a spin-coating method. In the present work, poly(methyl phenylsilane) (PMPS) and decaphenylcyclopentasilane (DPPS) were used as the hole transport layers. First, structural and optical properties of the PMPS and DPPS films were investigated, and the as-prepared PMPS and DPPS films were amorphous. Optical absorption spectra of the amorphous PMPS and DPPS showed some marked features due to the nature of polysilanes. Then, microstructures, optical and photovoltaic properties of the perovskite-type photovoltaic devices with polysilane hole transport layers were investigated. Current density-voltage characteristics and incident photon to current conversion efficiency of the photovoltaic devices with the polysilane layers showed different photovoltaic performance each other, attributed to molecular structures of the polysilanes and Si content in the present hole transport layers.
Cite this paper: Shirahata, Y. , Oku, T. , Fukunishi, S. and Kohno, K. (2017) Fabrication of Perovskite-Type Photovoltaic Devices with Polysilane Hole Transport Layers. Materials Sciences and Applications, 8, 209-222. doi: 10.4236/msa.2017.82014.

[1]   Kojima, A., Teshima, K., Shirai, Y. and Miyasaka, T. (2009) Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 131, 6050-6051.

[2]   Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W. and Park, N.-G. (2011) 6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell. Nanoscale, 3, 4088-4093.

[3]   Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., Moon, S.-J., Humphry-Baker, R., Yum, J.-H., Moser, J.E., Grätzel, M. and Park, N.G. (2012) Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific Reports, 2, 591.

[4]   Noh, J.H., Im, S.H., Heo, J.H., Mandal, T.N. and Seok, S.I. (2013) Chemical Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells. Nano Letters, 13, 1764-1769.

[5]   Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeerudin, M.K. and Grätzel, M. (2013) Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells. Nature, 499, 316-319.

[6]   Yang, W.S., Nor, J.H., Jeon, N.J., Kim, Y.C., Ryu, S., Seo, J. and Seok, S.I. (2015) High-Performance Photovoltaic Perovskite Layers Fabricated through Intramolecular Exchange. Science, 348, 1234-1237.

[7]   McMeekin, D.P., Sadoughi, G., Rehman, W., Eperon, E., Saliba, M., Horantner, M.T., Haghighirad, A., Sakai, N., Korte, L., Rech, B., Johnston, M.B., Herz, L.M. and Snaith, H.J. (2016) A Mixed-Cation Lead Mixed-Halide Perovskite Absorber for Tandem Solar Cells. Science, 351, 151-155.

[8]   Bi, D., Tress, W., Dar, M.I., Gao, P., Luo, J., Renevier, C., Schenk, K., Abate, A., Giordano, F., Correa-Baena, J.-P., Decoppet, J.-D., Zakeeruddin, S.M., Nazeeruddin, M.K., Grätzel, M. and Hagfeldt, A. (2016) Efficient Luminescent Solar Cells Based on Tailored Mixed-Cation Perovskites. Science Advances, 2, Article ID: e1501170.

[9]   Saliba, M., Matsui, T., Seo, J.-Y., Domanski, K., Correa-Baena, J.-P., Nazeeruddin, M.K., Zakeeruddin, S.M., Tress, W., Abate, A., Hagfeldt, A. and Grätzel, M. (2016) Cesium-Containing Triple Cation Perovskite Solar Cells: Improved Stability, Reproducibility and High Efficiency. Energy and Environmental Science, 9, 1989-1997.

[10]   Saliba, M., Orlandi, S., Matsui, T., Aghazada, S., Cavazzini, M., Correa-Baena, J.-P., Gao, P., Scopelliti, R., Mosconi, E., Dahmen, K.-H., De Angelis, F., Abate, A., Hagfeldt, A., Pozzi, G., Grätzel, M. and Nazeeruddin, M.K. (2016) A Molecularly Engineered Hole-Transporting Material for Efficient Perovskite Solar Cells. Nature Energy, 1, Article ID: 15017.

[11]   Yi, C., Li, X., Luo, J., Zakeeruddin, S.M. and Grätzel, M. (2016) Perovskite Photovoltaics with Outstanding Performance Produced by Chemical Conversion of Bilayer Mesostructured Lead Halide/TiO2 Films. Advanced Materials, 28, 2964-2970.

[12]   Bi, D., Yi, C., Luo, J., Decoppet, J.-D., Zhang, F., Zakeeruddin, S.M., Li, X., Hagfeldt, A. and Grätzel, M. (2016) Polymer-Templated Nucleation and Crystal Growth of Perovskite Films for Solar Cells with Efficiency Greater than 21%. Nature Energy, 1, Article ID: 16142.

[13]   Chart of Best Research-Cell Efficiencies Provided by NREL.

[14]   Zhao, X. and Park, N.-G. (2015) Stability Issues on Perovskite Solar Cells. Photonics, 2, 1139-1151.

[15]   Kumar, C.V., Sfyri, G., Raptis, D., Stathatos, E. and Lianos, P. (2015) Perovskite Solar Cell with Low Cost Cu-Phthalocyanine as Hole Transporting Material. RSC Advances, 5, 3786-3791.

[16]   Qin, P., Tanaka, S., Ito, S., Tetreault, N., Manabe, K., Nishino, H., Nazeeruddin, M.K. and Grätzel, M. (2014) Inorganic Hole Conductor-Based Lead Halide Perovskite Solar Cells with 12.4% Conversion Efficiency. Nature Communications, 5, 3834.

[17]   Ito, S., Tanaka, S., Vahlman, H., Nishino, H., Manabe, K. and Lund, P. (2014) Carbon-Double-Bond-Free Printed Solar Cells from TiO2/CH3NH3PbI3/CuSCN/Au: Structural Control and Photoaging Effects. ChemPhysChem, 15, 1194-1200.

[18]   Suzuki, A., Kida, T., Takagi, T. and Oku, T. (2016) Effects of Hole-Transporting Layers of Perovskite-Based Solar Cells. Japanese Journal of Applied Physics, 55, 02BF01.

[19]   Kepler, R.G. (1989) Electronic Properties of σ-Conjugated Polysilanes. Synthetic Metals, 28, 573-580.

[20]   Furukawa, K., Fujino, M. and Matsumoto, N. (1990) Optical Properties of Silicon Network Polymers. Macromolecules, 23, 3423-3426.

[21]   Haga, Y. and Harada, Y. (2001) Photovoltaic Characteristics of Phtaalocyanine-Polysilane Composite Films. Japanese Journal of Applied Physics, 40, 855-861.

[22]   Oku, T., Nakagawa, J., Iwase, M., Kawashima, A., Yoshida, K., Suzuki, A., Akiyama, T., Tokumitsu, K., Yamada, M. and Nakamura, M. (2013) Microstructures and Photovoltaic Properties of Polysilane-Based Solar Cells. Japanese Journal of Applied Physics, 52, 04CR07.

[23]   Iwase, M., Oku, T., Suzuki, A., Akiyama, T., Tokumitsu, K., Yamada, M. and Nakamura, M. (2012) Fabrication and Characterization of Poly[Diphenylsilane]-Based Solar Cells. Journal of Physics: Conference Series, 352, Article ID: 012018.

[24]   Nakagawa, J., Oku, T., Suzuki, A., Akiyama, T., Tokumitsu, K., Yamada, M. and Nakamura, M. (2012) Fabrication and Characterization of Polysilane/C60 Thin Film Solar Cells. Journal of Physics: Conference Series, 352, Article ID: 012019.

[25]   Shirahata, Y., Yamamoto, Y., Suzuki, A., Oku, T., Fukunishi, S. and Kohno, K. (2016) Effects of Polysilane-Doped Spiro-OMeTAD Hole Transport Layers on Photovoltaic Properties. Physica Status Solidi A.

[26]   Oku, T., Hibi, N., Suzuki, A., Akiyama, T., Yamada, M., Fukunishi, S. and Kohno, K. (2015) Effects of Triphenylborane Addition to Decaphenylcyclopentasilane Thin Films. JJAP Conference Proceedings, 3, Article ID: 011404.

[27]   Oku, T., Zushi, M., Imanishi, Y., Suzuki, A. and Suzuki, K. (2014) Microstructures and Photovoltaic Properties of Perovskite-Type CH3NH3PbI3 Compounds. Applied Physics Express, 7, Article ID: 121601.

[28]   Oku, T., Ohishi, Y. and Suzuki, A. (2016) Effects of Antimony Addition to Perovskite-Type CH3NH3PbI3 Photovoltaic Devices. Chemistry Letters, 45, 134-136.

[29]   Oku, T., Ohishi, Y., Suzuki, A. and Miyazawa, Y. (2016) Effects of Cl Addition to Sb-Doped Perovskite-Type CH3NH3PbI3 Photovoltaic Devices. Metals, 6, 147.

[30]   Suzuki, A., Okada, H. and Oku, T. (2016) Fabrication and Characterization of CH3NH3PbI3-x-yBrxCly Perovskite Solar Cells. Energies, 9, 346.

[31]   Shirahata, Y., Suzuki, A. and Oku, T. (2016) Fabrication and Characterization of Bismuth Ferrite as an Electron Transport Layer in Perovskite Photovoltaic Devices. Journal of the Ceramics Society of Japan, 124, 602-605.

[32]   Eze, V.O., Lei, B. and Mori, T. (2016) Air-Assisted Flow and Two-Step Spin-Coating for Highly Efficient CH3NH3PbI3 Perovskite Solar Cells. Japanese Journal of Applied Physics, 55, 02BF08.

[33]   Kim, H.-B., Choi, H., Jeong, J., Kim, S., Walker, B., Song, S. and Kim, J.Y. (2014) Mixed Solvents for the Optimization of Morphology in Solution-Processed, Inverted-Type Perovskite/Fullerene Hybrid Solar Cells. Nanoscale, 6, 6679-6683.

[34]   Tachibana, H., Mizuno, T. and Ishibe, S. (2011) Optical Properties of Siloxene Films Prepared by High-Temperature Heat Treatment from Thin Films of Polysilane Containing Anthryl Groups. Japanese Journal of Applied Physics, 50, 04DK18.

[35]   Nespurek, S., Schauer, F. and Kadashchuk, A. (2001) Visible Photoluminescence in Polysilanes. Monatshefte für Chemie Chemical Monthly, 132, 159-168.

[36]   Ouyang, W., Kuna, E., Yepez, A., Balu, A.M., Romero, A.A., Colmenares, J.C. and Luque, R. (2016) Mechanochemical Synthesis of TiO2 Nanocomposites as Photocatalysts for Benzyl Alcohol Photo-Oxidation. Nanomaterials, 6, 93.

[37]   Song, Z., Watthage, S.C., Phillips, A.B., Tompkins, B.L., Ellingson, R.J. and Heben, M.J. (2015) Impact of Processing Temperature and Composition on the Formation of Methylammonium Lead Iodide Perovskites. Chemistry of Materials, 27, 4612-4619.

[38]   Yamada, Y., Nakamura, T., Endo, M., Wakamiya, A. and Kanemitsu, Y. (2014) Near-Band-Edge Optical Responses of Solution-Processed Organic-Inorganic Hybrid Perovskite CH3NH3PbI3 on Mesoporous TiO2 Electrodes. Applied Physics Express, 7, Article ID: 032302.

[39]   Leong, W.L., Ooi, Z.-E., Sabba, D., Yi, C., Zakeeruddin, S.M., Grätzel, M., Gordan, J.M., Katz, E.A. and Mathews, N. (2016) Identifying Fundamental Limitations in Halide Perovskite Solar Cells. Advanced Materials, 28, 2439-2445.

[40]   Ogomi, Y., Morita, A., Tsukamoto, S., Saitho, T., Fujikawa, N., Shen, Q., Toyoda, T., Yoshino, K., Pandey, S.S., Ma, T. and Hayase, S. (2014) CH3NH3SnxPb(1–x)I3 Perovskite Solar Cells Covering up to 1060 nm. Journal of Physical Chemistry Letters, 5, 1004-1011.

[41]   Green, M.A., Ho-Baillie, A. and Snaith, H.J. (2014) The Emergence of Perovskite Solar Cells. Nature Photonics, 8, 506-514.

[42]   Kim, J.Y., Kim, S.H., Lee, H.-H., Lee, K., Ma, W., Gong, X. and Heeger, A.J. (2006) New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer. Advanced Materials, 18, 572-576.

[43]   Isaka, H. and Matsumoto, N. (1990) One-Dimensional Hetero-Junction Structure in Polysilane. Journal of Applied Physics, 68, 6380-6382.

[44]   Wang, Q., Shao, Y., Xie, H., Lyu, L., Liu, X., Gao, Y. and Huang, J. (2014) Qualifying Composition Dependent p and n Self-Doping in CH3NH3PbI3. Applied Physics Letters, 105, Article ID: 163508.