Back
 MSCE  Vol.5 No.2 , February 2017
New Strategy for Chemically Attachment of Imine Group on Multi-Walled Carbon Nanotubes Surfaces: Synthesis, Characterization and Study of DC Electrical Conductivity
Abstract: This paper used a new approach of preparing poly-composites by covalent linkage between the MWCNT’s by imine group. The Poly (Imine)/MWCNT Composite was synthesized by the solution blending method from reacted amino multi-walled carbon nanotubes (MWCNT-NH2) with Terephthalaldehyde (TPAL). The obtained poly-composite was characterized by FT-IR, UV-Vis, XRD, TEM, SEM, TGA, DSC and DC electrical conductivity. The formation of Poly (Imine)/MWCNT composite was confirmed. The DC electrical conductivity of poly-composites was within the range 2.3 × 104 - 5.3 × 104 S/cm due to the interaction between the nanotubes.
Cite this paper: Al-Shuja’a, O. , Obeid, A. , El-Shekeil, Y. , Hashim, M. and Al-Washali, Z. (2017) New Strategy for Chemically Attachment of Imine Group on Multi-Walled Carbon Nanotubes Surfaces: Synthesis, Characterization and Study of DC Electrical Conductivity. Journal of Materials Science and Chemical Engineering, 5, 11-21. doi: 10.4236/msce.2017.52002.
References

[1]   Harris, P.J.F. (1999) Carbon Nanotubes and Related Structures. Cambridge University Press, Cambridge, 16-24.
https://doi.org/10.1017/cbo9780511605819

[2]   Ajayan, P.M., Charlier, J.C. and Rinzler, A.G. (1999) Carbon Nanotubes: From Macromolecules to Nanotechnology. Proceeding of the National Academy of Sciences of the United States of America, 96, 14199-14200.
https://doi.org/10.1073/pnas.96.25.14199

[3]   Ratner, M. and Ratner, D. (2003) Nanotechnology: A Gentle Introduction to the Next Big Idea. Upper Saddle River, Prentice Hall.

[4]   Taniguchi, N. (1974) On the Basic Concept of Nanotechnology. Proceedings of the International Conference on Production Engineering, Tokyo, 18-23.

[5]   Biercuk, M.J., Llaguno, M.C., Radosavljevic, M., Hyun, J.K., Johnson, A.T. and Fischer, J.E. (2002) Carbon Nanotube Composites for Thermal Management. Applied Physics Letters, 80, 2767-2769.
https://doi.org/10.1063/1.1469696

[6]   Krishnamoorti, R. and Vaia, R. (2002) Polymer Nanocomposites: Introduction. In: Krishnamoorti, R. and Vaia, R., Eds., Polymer Nanocomposites-Synthesis, Characterization and Modeling, ACS Symposium Series, Vol. 804, American Chemical Society, Washington, DC.

[7]   Santhanam, V. and Andres, R.P. (2004) Metal Nanoparticles and Self-Assembly into Electronic Nanostructures. In: Schwarz, J.A., Contescu, C.I. and Putyera, K., Eds., Dekker Encyclopedia of Nanoscience and Nanotechnology, CRC Press, Boca Raton, 4014.

[8]   Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F. and Smalley, R.E. (1985) C60: Buckminsterfullerene. Nature, 318, 162-163.
https://doi.org/10.1038/318162a0

[9]   Meyyappan, M. (2005) Carbon Nanotubes: Science and Applications. CRC Press, Boca Raton, 28.

[10]   Ajayan, P.M., Stephan, O., Colliex, C. and Trauth, D. (1994) Aligned Carbon Nano-tube Arrays Formed by Cutting a Polymer Resin—Nanotube Composite. Science, 265, 1212-1214.
https://doi.org/10.1126/science.265.5176.1212

[11]   Dresselhaus, M.S., Dresselhaus, G. and Eklund, P.C. (1996) Science of Fullerenes and Carbon Nanotubes. 2nd Edition, Springer, New York, 922.

[12]   Wei, B.Q., Vajtai, R. and Ajayan P.M. (2001) Reliability and Current Carrying Capacity of Carbon Nanotubes. Applied Physics Letters, 79, 1172-1174.
https://doi.org/10.1063/1.1396632

[13]   Durkop, T., Kim, B.M. and Fuhrer, M.S. (2004) Properties and Applications of High-Mobility Semiconducting Nanotubes. Journal of Physics: Condensed Matter, 16, 553-580.
https://doi.org/10.1088/0953-8984/16/18/r01

[14]   Bardash, L. (2011) Synthesis and Investigation of Nanostructured Polymer Composites Based on Heterocyclic Esters and Carbon Nanotubes. Other Universite Claude Bernard, Lyon.

[15]   Breuer, O. and Sundararaj, U. (2004) Big Returns from Small Fibers: A Review of Polymer/Carbon Nanotube Composites. Polymer Composites, 25, 630-645.
https://doi.org/10.1002/pc.20058

[16]   Atieh, M.A. (2011) Effect of Functionalize Carbon Nanotubes with Amine Functional Group on the Mechanical and Thermal Properties of Styrene Butadiene Rubber. Journal of Thermoplastic Composite Materials, 24, 613-624.
https://doi.org/10.1177/0892705710397456

[17]   Saeed, K. and Park, S.Y. (2010) Preparation and Characterization of Multiwalled Carbon Nanotubes/Polyacrylonitrile Nanofibers. Journal Polymer Research, 17, 535-540.
https://doi.org/10.1007/s10965-009-9341-4

[18]   Yuen, S.M., Ma, C.C., Lin, Y.Y. and Kuan, H.C. (2007) Preparation, Morphology and Properties of Acid and Amine Modified Multiwalled Carbon Nanotube/Polyimide Composite. Composites Science and Technology, 67, 2564-2573.
https://doi.org/10.1016/j.compscitech.2006.12.006

[19]   Eren, O., Ucar, N., Onen, A., Karacan, I., Kizildag, N., Demirsoy, N., Vurur, O.F. and Borazan, I. (2016) Effect of Differently Functionalized Carbon Nanotubes on the Properties of Composite Nanofibres. Indian Journal of Fibre & Textile Research, 41, 138-144.

[20]   Li, Z., Li, S., Yang, M. and Huang, R. (2005) A Novel Approach to Preparing Carbon Nanotube Reinforced Thermoplastic Polymer Composites. Carbon, 43, 2413-2416.
https://doi.org/10.1016/j.carbon.2005.04.037

[21]   Moniruzzaman, M. and Winey, K.I. (2006) Polymer Nanocomposites Containing Carbon Nanotubes. Macromolecules, 39, 5194-5205.
https://doi.org/10.1021/ma060733p

[22]   Moradi, L., Bina, M.R. and Partovi, T. (2014) New Strategy for Chemically Attachment of Schiff Base Complexes on Multiwalled Carbon Nanotubes Surfaces. Current Chemistry Letters, 3, 147-156.
https://doi.org/10.5267/j.ccl.2014.5.004

[23]   Sagar, S., Iqbal, N. and Maqsood, A. (2013) Dielectric, Electric and Thermal Properties of Carboxylic Functionalized Multiwalled Carbon Nanotubes Impregnated Polydimethylsiloxane Nanocomposite. Journal of Physics: Conference Series, 439, Article ID: 012024.

[24]   Suh, J.Y., Shin, S.E. and Bae, D.H. (2016) Electrical Properties of Polytetrafluoroethylene/Few-Layer Graphene Composites Fabricated by Solid-State Processing. Journal of Composite Materials, Online.
https://doi.org/10.1177/0021998316674349

[25]   Zenkel, C., Albuerne, J., Emmler, T., Boschetti-de-Fierro, A., Helbig, J. and Abetz, V. (2012) New Strategies for the Chemical Characterization of Multi-Walled Carbon Nanotubes and Their Derivatives. Microchimica Acta, 179, 41-48.
https://doi.org/10.1007/s00604-012-0848-8

[26]   Al-Yusufy, F., El-Shekeil, A., Al-Shuja’a, O. and Qataei, M. (2014) Syntheses, Characterization and DC Electrical Conductivity of Phenylene Imidazole Phenanthroline Dendritic and Linear Metal Complexes: A Comparative Study. Journal of Macro-molecular Science Part A: Pure and Applied Chemistry, 51, 689-698.
https://doi.org/10.1080/10601325.2014.936233

[27]   El-Shekeil, A., Al-Yusufy, F., Al-Shuja’a, O. and Qataei, M. (2015) DC Electrical Conductivity of Three-Branched Dendritic and Linear Metal Complexes of N-Substituted Imidazole Phenanthroline Derivatives. Journal of Macromolecular Science Part A: Pure and Applied Chemistry, 52, 809-820.
https://doi.org/10.1080/10601325.2015.1067038

[28]   Al-Shuja’a, O., Obeid, A. and El-Shekeil, A. (2011) Spectral, Thermal and DC Electrical Conductivity of Charge Transfer Complex Formed between 5,7-Dimethyl-1-Oxo-2-Phenyl-1H-Pyrazolo [1,2-α]Pyrazol-4-ium-3-Olate and Iodine. Journal of Macromolecular Science Part A: Pure and Applied Chemistry, 48, 355-364.
https://doi.org/10.1080/10601325.2011.562465

[29]   Obeid, A., Al-Shuja’a, O., Aqeel, S., Al-Aghbari, S. and El-Shekeil, A. (2012) DC Electrical Conductivity of Some Oligoazomethines Doped with Nanotubes. Journal of Macromolecular Science Part A: Pure and Applied Chemistry, 49, 116-123.
https://doi.org/10.1080/10601325.2012.641906

[30]   Aqeel, S., Al-Shuja’a, O., Huang, Z., Le, C., Zhang, Y. and Wang, Z. (2015) Improved Thermal and Electrical Properties of Nanocomposites Based on Poly(Vinyl pyrrolidone)/Poly(Acrylonitrile)/Multiwalled Carbon Nanotubes. Journal of Chemical Engineering and Chemistry Research, 2, 771-779.

 
 
Top