Back
 MSCE  Vol.5 No.1 , January 2017
Templated J-Aggregate Nanotubes for the Detection of Dopamine
Abstract: J-aggregates of dye molecules are a unique supramolecular structure, which shows great promise in photoelectric devices due to its remarkable optical and transport properties. In this paper, we report the templated formation of J-aggregate nanotubes by the adsorption of 3,3’-diethylthiacarbocyanine iodide on the self-assembled nanotubes of lithocholic acid. The optical and electronic properties of the templated J-aggregate nanotubes are studied. A sensor platform is fabricated by depositing the J-aggregate nanotubes on interdigitated gold electrodes for the detection of dopamine (DA). We find that the current change of the J-aggregate nanotube-based sensor platform in response to DA is linear in the concentration range from 10 nM to 70 nM, giving the detection limit of 0.27 nM.
Cite this paper: Rhodes, S. , Wang, X. , Liang, W. , Cho, H. and Fang, J. (2017) Templated J-Aggregate Nanotubes for the Detection of Dopamine. Journal of Materials Science and Chemical Engineering, 5, 142-154. doi: 10.4236/msce.2017.51018.
References

[1]   Jelley, E.E. (1936) Molecular, Nematic and Crystal States of I: I-Diethyl—Cyanine Chloride. Nature, 138, 2.

[2]   Balaban, T.S. (2005) Tailoring Porphyrins and Chlorins for Self-Assembly in Biomimetic Artificial Antenna systems. Accounts of Chemical Research, 38, 612-623.
https://doi.org/10.1021/ar040211z

[3]   Scholes, G.D., Fleming, G.R., Olaya-Castro, A. and van Grondelle, R. (2011) Lessons from Nature about Solar Light Harvesting. Nature Chemistry, 3, 763-774.
https://doi.org/10.1038/nchem.1145

[4]   Sengupta, S. and Würthner, F. (2013) Chlorophyll J-Aggregates: From Bioinspired dye Stacks to Nanotubes, Liquid Crystals, and Biosupramolecular Electronics. Accounts of Chemical Research, 46, 2498-2512.
https://doi.org/10.1021/ar400017u

[5]   Saikin, S.K., Eisfeld, A., Valleau, S. and Aspuru-Guzik, A. (2013) Photonics Meets Cxcitonics: Natural and Artificial Molecular Aggregates. Nanophotonics, 2, 21-38.
https://doi.org/10.1515/nanoph-2012-0025

[6]   Tani, T. (1996) J-Aggregates in Spectral Sensitization of Photographic Materials. In Kobayashi, T., Ed., J-Aggregates, World Scientific, Singapore, p. 209.
https://doi.org/10.1142/9789812830029_0009

[7]   Collini, E., Ferrante, C., Bozio, R., Lodi, A. and Ponterini, G. (2006) Large Third-Order Nonlinear Optical Response of Porphyrin J-Aggregates Oriented in Self-Assembled Thin Films. Journal of Materials Chemistry, 16, 1573-1578.
https://doi.org/10.1039/b517591g

[8]   Cui, L., Tokarz, D., Cisek, R., Ng, K.K., Wang, F., Chen, J., Barzda, V. and Zheng, G. (2015) Organized Aggregation of Porphyrins in Lipid Bilayers for Third Harmonic Generation Microscopy. Angewandte Chemie International Edition, 54, 13928-13932.
https://doi.org/10.1002/anie.201506171

[9]   Era, M., Adachi, C., Tsutsui, T. and Saito, S. (1991) Double-Heterostructure Electroluminescent Device with Cyanine-Dye Bimolecular Layer as An Emitter. Chemical Physics Letters, 178, 488-490.
https://doi.org/10.1016/0009-2614(91)87007-X

[10]   Maltsev, E.I., Lypenko, D.A., Shapiro, B.I., Brusentseva, M.A., Milburn, G.H.W., Wright, J., Hendriksen, A., Berendyaev, V.I., Kotov, B.V. and Vannikov, A.V. (1999) Electroluminescence of Polymer/J-Aggregate Composites. Applied Physical Letters, 75, 1896.
https://doi.org/10.1063/1.124864

[11]   Spencer, S., Cody, J., Misture, S., Cona, B., Heaphy, P., Rumbles, G., Andersen, J. and Collison, C. (2014) Critical Electron Transfer Rates for Exciton Dissociation Governed by Extent of Crystallinity in Small Molecule Organic Photovoltaics. Journal of Physical Chemistry C, 118, 14840-14847.
https://doi.org/10.1021/jp504377r

[12]   Chen, G., Sasabe, H., Lu, W., Wang, X.F., Kido, J., Hong, Z. and Yang, Y. (2013) J-Aggregation of a Squaraine Dye and Its Application in Organic Photovoltaic Cells. Journal of. Materials Chemistry A, 1, 6547-6552.

[13]   Jones, R.M., Lu, L., Helgeson, R., Bergstedt, T.S., McBranch, D.W. and Whitten, D.G. (2001) Building Highly Sensitive Dye Assemblies for Biosensing from Molecular Building Blocks. Proceedings of the National Academy of Sciences USA, 98, 14769-14772.
https://doi.org/10.1073/pnas.251555298

[14]   Ng, K.K., Shakiba, M., Huynh, E., Weersink, R.A., Roxin, A., Wilson, B.C. and Zheng, G. (2014) Stimuli-Responsive Photoacoustic Nanoswitch for in Vivo Sensing Applications. ACS Nano, 8, 8363-8373.
https://doi.org/10.1021/nn502858b

[15]   Liang, W., He, S. and Fang, J.Y. (2014) Self-Assembly of J-Aggregate Nanotubes and Their Applications for Sensing Dopamine. Langmuir, 30, 805-811.
https://doi.org/10.1021/la404022q

[16]   Wang, W., Silva, G.L. and Armitage, B.A. (2000) DNA-Templated Formation of a Helical Cyanine Dye J-Aggregate. Journal of the American Chemical Society, 122, 9977-9986.
https://doi.org/10.1021/ja002184n

[17]   Berlepsch, H.V., Brandenburg, E., Koksch, B. and Bottcher, C. (2010) Peptide Adsorption to Cyanine Dye Aggregates Revealed by Cryo-Transmission Electron Microscopy. Langmuir, 26, 11452-11460.
https://doi.org/10.1021/la100944d

[18]   Kim, J.H., Lee, M., Lee, J.S. and Park, C.B. (2012) Self-Assembled Light-Harvesting Peptide Nanotubes for Mimicking Natural Photosynthesis. Angewandte Chemie International Edition, 51, 517-520.
https://doi.org/10.1002/anie.201103244

[19]   Von Berlepsch, H., Böttcher, C., Ouart, A., Burger, C., Dähne, S. and Kirstein, S. (2000) Supramolecular Structures of J-Aggregates of Carbocyanine Dyes in Solution. Journal of Physical Chemistry B, 104, 5255-5262.
https://doi.org/10.1021/jp000220z

[20]   Lang, E., Sorokin, A., Drechsler, M., Malyukin, Y.V. and Köhler, J. (2005) Optical Spectroscopy on Individual Amphi-PIC J-Aggregates. Nano Letters, 5, 2635-2640.
https://doi.org/10.1021/nl051132z

[21]   Kameta, N., Ishikawa, K., Masuda, M., Asakawa, M. and Shimizu, T. (2011) Soft Nanotubes Acting as a Light-Harvesting Antenna System. Chemistry of Materials, 24, 209-214.
https://doi.org/10.1021/cm2030526

[22]   Yuen-Zhou, J., Arias, D.H., Eisele, D.M., Steiner, C.P., Krich, J.J., Bawendi, M.G., Nelson, K.A. and Aspuru-Guzik, A. (2014) Coherent Exciton Dynamics in Supramolecular Light-Harvesting Nanotubes Revealed by Ultrafast Quantum Process Tomography. ACS Nano, 8, 5527-5534.
https://doi.org/10.1021/nn406107q

[23]   Clark, K.A., Krueger, E.L. and Vanden Bout, D.A. (2014) Direct Measurement of Energy Migration in Supramolecular Carbocyanine Dye Nanotubes. Journal of Physical Chemistry Letters, 5, 2274-2282.
https://doi.org/10.1021/jz500634f

[24]   Eisele, D.M., Knoester, J., Kirstein, S., Rabe, J.B. and Vanden Bout, D.A. (2009) Uniform Exciton Fluorescence from Individual Molecular Nanotubes Immobilized on Solid Substrates. Nature Nanotechnology, 4, 658-663.
https://doi.org/10.1038/nnano.2009.227

[25]   Jaber, M., Robinson, S.W., Missale, C. and Caron, M.G. (1996) Dopamine Receptors and Brain Function. Neuropharmacology, 35, 1503-1519.
https://doi.org/10.1016/S0028-3908(96)00100-1

[26]   Bowirrat, A. and Oscar-Berman, M. (2005) Relationship between Dopaminergic Neurotransmission, Alcoholism, and Reward Deficiency Syndrome. American Journal of Medical Genetics, 132B, 29-37.
https://doi.org/10.1002/ajmg.b.30080

[27]   Wiedemann, D.J., Kawagoe, K.T., Kennedy, R.T., Ciolkowski, E.L. and Wightman, R.M. (1991) Strategies for Low Detection Limit Measurements with Cyclic Voltammetry. Analytical Chemistry, 63, 2965-2970.
https://doi.org/10.1021/ac00024a030

[28]   Arrigan, D.W., Ghita, M. and Beni, V. (2004) Selective Voltammetric Detection of Dopamine in the Presence of Ascorbate. Chemical Communications, 732-733.
https://doi.org/10.1039/b316493d

[29]   Park, Y.N., Zhang, X., Rubakhin, S.S. and Sweedler, J.V. (1999) Independent Optimization of Capillary Electrophoresis Separation and Native Fluorescence Detection Conditions for Indolamine and Catecholamine Measurements. Analytical Chemistry, 71, 4997-5002.
https://doi.org/10.1021/ac990659r

[30]   Thabano, J.R.E., Breadmore, M.C., Hutchinson, J.P., Johns, C. and Haddad, P.R. (2007) Capillary Electrophoresis of Neurotransmitters Using In-Line Solid-Phase Extraction and Preconcentration Using a Methacrylate-Based Weak Cation-Exchange Monolithic Stationary Phase and a pH Step Gradient. Journal of Chromatography A, 1175, 117-126.
https://doi.org/10.1016/j.chroma.2007.09.069

[31]   Carrera, V., Sabater, E., Vilanova, E. and Sogorb, M.A. (2007) A Simple and Rapid HPLC-MS Method for the Simultaneous Determination of Epinephrine, Norepinephrine, Dopamine and 5-Hydroxytryptamine: Application to The Secretion of Bovine Chromaffin Cell Cultures. Journal of Chromatography B, 847, 88-94.
https://doi.org/10.1016/j.jchromb.2006.09.032

[32]   Terech, P. and Talmon, Y. (2002) Aqueous Suspensions of Steroid Nanotubules: Structural and Rheological Characterizations. Langmuir, 18, 7240-7244.
https://doi.org/10.1021/la025574r

[33]   Terech, P., Jean, B. and Ne, F. (2006) Hexagonally Ordered Ammonium Lithocholate Self-Assembled Nanotubes with Highly Monodisperse Sections. Advanced Materials, 18, 1571-1574.
https://doi.org/10.1002/adma.200502358

[34]   Pal, A., Basit, H., Sen, S., Aswal, V.K. and Bhattacharya, S.J. (2009) Structure and Properties of Two Component Hydrogels Comprising Lithocholic Acid and Organic Amines. Journal of Materials Chemistry, 19, 4325-4334.
https://doi.org/10.1039/b903407b

[35]   Zhang, X., Zou, J., Tamhane, K., Kobzeff, F. and Fang, J.Y. (2010) Self-Assembly of pH-Switchable Spiral Tubes: Supramolecular Chemical Springs. Small, 6, 217-220.
https://doi.org/10.1002/smll.200901067

[36]   Zhang, X., Mathew, M., Gesquiere, A.J. and Fang, J.Y. (2010) Fluorescent Composite Tubes with pH-Controlled Shapes. Journal of Materials Chemistry, 20, 3716-3721.
https://doi.org/10.1039/b927038h

[37]   Wang, H., Xu, W., Song, S., Feng, L., Song, A. and Hao. J. (2014) Unique Temperature-Dependent Supramolecular Self-Assembly: From Hierarchical 1D Nanostructures to Super Hydrogel. Journal of Physical Chemistry B, 118, 4693-4701.
https://doi.org/10.1021/jp500113h

[38]   Knoester, J. and Agranovich, V.M. (2003) In Electronic Excitations in Organic Based Nanostructures. In: Agranovich, V.M. and Bassani, G.F., Eds., Thin Films and Nanostructures, Elsevier, Amsterdam, Vol. 31.

[39]   Sorokin, A.V., Filimonova, I.I., Grynyov, R.S., Guralchuk, G.Y., Yefimova, S.L. and Malyukin, Y.V. (2010) Control of Exciton Migration Efficiency in Disordered J-Aggregates. Journal of physical Chemistry C, 114, 1299-1305.
https://doi.org/10.1021/jp906665j

[40]   Klegeris, A., Korkina, L.G. and Greenfield, S.A. (1995) Autoxidation of Dopamine: A Comparison of Luminescent and Spectrophotometric Detection in Basic Solutions. Free Radical Biology and Medicine, 8, 215-222.
https://doi.org/10.1016/0891-5849(94)00141-6

[41]   Medintz, I.L., Stewart, M.H., Trammell, S.A., Susumu, K., Delehanty, J.B., Mei, B.C., Melinger, J.S., Blanco-Canosa, J.B., Dawson, P.E. and Mattoussi, H. (2010) Quantum-Dot/Dopamine Bioconjugates Function as Redox Coupled Assemblies for in vitro and Intracellular pH Sensing. Nature Materials, 9, 676-684.
https://doi.org/10.1038/nmat2811

[42]   Lee, H., Dellatore, S.M., Miller, W.M. and Messersmith, P.B. (2007) Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science, 318, 426-430.
https://doi.org/10.1126/science.1147241

[43]   Bredas, J.L., Silbey, R., Boudreux, D.S. and Chance, R.R. (1983) Chain-Length Dependence of Electronic and Electrochemical Properties of Conjugated Systems: Polyacetylene, Polyphenylene, Polythiophene, and Polypyrrole. Journal of the American Chemical Society, 105, 6555-6559.
https://doi.org/10.1021/ja00360a004

[44]   Mohamed, M. and Eichborn, S.H. (2010) Measurements and Prediction of Electronic Properties of Discotic Triphenylenes and Phthalocyanines. ECS Transactions, 25, 1-10.

[45]   Mohammad-Shiri, H., Ghaemi, M., Riahi, S. and Akbari-Sehat, A. (2011) Computational and Electrochemical Studies on the Redox Reaction of Dopamine in Aqueous Solution. International Journal of Electrochemical Science, 6, 317-336.

[46]   Dawson, T.M. and Dawson, V.L. (2003) Molecular Pathways of Neurodegeneration in Parkinson’s Disease. Science, 302, 819-822.
https://doi.org/10.1126/science.1087753

[47]   Zetterstrom, T., Sharp, T., Marsden, C.A. and Ungerstedt, U. (1983) In Vivo Measurement of Dopamine and Its Metabolites by Intracerebral Dialysis: Changes after d-Amphetamine. Journal of Neurochemistry, 41, 1769-1773.
https://doi.org/10.1111/j.1471-4159.1983.tb00893.x

 
 
Top