Back
 EPE  Vol.9 No.1 , January 2017
Assessment of Sustainability Indicators of Thermoelectric Power Generation in Cameroon Using Exergetic Analysis Tools
Abstract: In this paper, we evaluate the performance and sustainability indicators of various thermal power generation technologies in Cameroon using the exergy analysis tools. For this purpose, on the basis of data from the International Energy Agency (IEA) for Cameroon corresponding to the period from 2006 to 2014, we calculated the average energy and exergy efficiencies of each electricity generation technology from thermal sources. The average values of the exergy efficiencies obtained are respectively 28.97% for the LFO plants, 30.94% for the HFO plants, 34.66% for the biofuel plants and 36.67% for the gas-fired plants. The average sustainability indexes for each of the technologies are determined and values range from 1.56 for LFO plants to 2.12 for biofuel plants. The improvement potentials of each technology are calculated in order to identify the tracks of increase of their efficiency. Average values range from 165.57 GWh for biofuel plants to 1301.77 GWh for LFO plants. The results of this study should enable the development of productive and applicable planning for future energy policies, in particular for the electricity sector in Cameroon.
Cite this paper: Inoussah, M. , Adolphe, M. and Daniel, L. (2017) Assessment of Sustainability Indicators of Thermoelectric Power Generation in Cameroon Using Exergetic Analysis Tools. Energy and Power Engineering, 9, 22-39. doi: 10.4236/epe.2017.91003.
References

[1]   Bouvier, L.F. and Grant, L. (1994) How Many Americans? Population, Immigration and the Environment. Sierra Club Books, San Francisco, CA, USA.

[2]   Meadows, D., Meadows, D. and Randers, J. (2004) Limits to Growth: the 30-Year Update. 3rd Edition, Chelsea Green Publishingng, White River Jct., VT, USA.

[3]   Barros, J.J.C., et al. (2015) Assessing the Global Sustainability of Different Electricity Generation Systems. Energy, 89, 473e-489e.
http://www.elsevier.com/locate/energy
https://doi.org/10.1016/j.energy.2015.05.110


[4]   United Nations (1987) Our Common Future. World Commission on Environment and Development. Oxford University Press, Oxford, UK.

[5]   United Nations (1992) The Rio Declaration on Environment and Development [Internet]. The United Nations Conference on Environment and Development (UNCED), Rio of Janeiro, Brazil, 3-14 June 1992.
http://www.un.org/documents/ga/conf151/aconf15126-1annex1.htm

[6]   ARSEL (2014) Politique Nationale, Stratégie et Plan d’Action pour l’Efficacité Ener-gétique dans le secteur de l’électricité au Cameroun Rapport final-Mars 2014. Agence de régulation du Secteur de l’Electricité-Cameroun.

[7]   SIE-Cameroun (2011) Situation Energétique du Cameroun: Rapport 2011, Système d’Information Energétique du Cameroun. Ministère de L’eau et de L’énergie, Yaoundé.

[8]   MINEE (2014) Statistical Yearbook of Cameroon’s Water and Energy. Collection of Series of Water and Energy Sub-Sector Statistical Information up to 2013. Ministère de l’Eau et de l’Energie, Yaoundé.

[9]   Sarlos, G., Haldi, P.A. and Verttraete, P. (2002) Système énergétiques—Offre et demande d’énergie: Méthodes d’analyse. Vol. 21, Traité de génie civil de l’EPFL, Presses Polytechniques et Universitaires Romande.

[10]   Joseph, M. and Wauters, P. (2011) Installations thermique motrices: Analyse éner- gétique et exergétique. 2nd Edition, UCL-Presses Universitaires de Louvain.

[11]   Cornelissen, R.L. (1997) Thermodynamics and Sustainable Development. The Use of Exergy Analysis and the Reduction of Irreversibility. PhD Thesis, Universiteit Twente, Twente.

[12]   Koumi, N.S., Ayina Ohandja, L.M., Kemajou A. and Monkam, L. (2014) Design and Simulation of Hybrid Solar High-Temperature Hydrogen Production System Using both Solar Photovoltaic and Thermal Energy. Sustainable Energy Technologies and Assessments, 7, 279-293.
http://www.elsevier.com/locate/seta
https://doi.org/10.1016/j.seta.2014.05.002


[13]   Szargut, J., Morris, D. and Steward, R. (1988) Exergy Analysis of Thermal, Chemical, and Metallurgical Processes. Hemisphere Publishing Corporation, New York.

[14]   Reistad, G. (1975) Available Energy Conversion and Utilization in the United States. Journal of Energy Power, 97, 429-434.
https://doi.org/10.1115/1.3446026

[15]   Petchers, N. (2003) Combined Heating, Cooling and Power Handbook: Technologies and Application. The Fairmont Press, Lilburn.

[16]   Kotas, T.J. (1995) The Exergy Method of Thermal Plant Analysis. 2nd Edition, Krieger Publishing, Malabar, 318 p.

[17]   Umberto, L. (2013) Entropy and Exergy in Irreversible Renewable Energy Systems. Renewable and Sustainable Energy Reviews, 20, 559-564.
https://doi.org/10.1016/j.rser.2012.12.017

[18]   Gouy, G. (1889) Sur l’énergie utilisable. Journal de Physique, 8, 501-518.
https://doi.org/10.1051/jphystap:018890080050101

[19]   Enea Consulting (2013) L’Exergie Concept. Enjeux et Usages pour l’Industrie, 16 p.

[20]   Hepbasli, A. (2008) A Key Review on Exergetic Analysis and Assessment of Renewable Energy Resources for a Sustainable Future. Renewable and Sustainable Energy Reviews, 12, 593-661.
http://www.elsevier.com/locate/rser
https://doi.org/10.1016/j.rser.2006.10.001


[21]   Dincer, I., Hussain, M.M. and Al-Zaharnah, I. (2004) Analysis of Sectoral Energy and Exergy Use of Saudi Arabia. International Journal of Energy Research, 28, 205-243.
https://doi.org/10.1002/er.962

[22]   Balta, M.T., Hepbasli, A. and Dincer, I. (2010) Thermodynamic Performance Comparison of Some Renewable and Non-Renewable Hydrogen Production Processes.

[23]   Naterer, G.F., Gabriel, K., Wang, Z.L., Daggupati, V.L. and Gravelsins, R. (2008) Thermochemical Hydrogen Production with a Copper-Chlorine Cycle. I. Oxygen Release from Copper Oxychloride Decomposition. International Journal of Hydrogen Energy, 33, 5439-5450.
https://doi.org/10.1016/j.ijhydene.2008.05.035

[24]   Rosen, M.A., Dincer, I. and Kanoglu, M. (2008) Role of Exergy in Increasing Efficiency and Sustainability and Reducing Environmental Impact. Energy Policy, 36, 128-137.
https://doi.org/10.1016/j.enpol.2007.09.006

[25]   Connelly, L. and Koshland, C.P. (1997) Two Aspects of Consumption: Using an Exergy-Based Measure of Degradation to Advance the Theory and Implementation of Industrial Ecology. Resources, Conservation and Recycling, 19, 199-217.
https://doi.org/10.1016/S0921-3449(96)01180-9

[26]   Van Gool, W. (1997) Energy Policy: Fairlytales and Factualities. In: Soares, O.D.D., Martins da Cruz, A., Costa Pereira, G., Soares, I. and Reis, A., Eds., Innovation and Technology-Strategies and Policies, Kluwer, Dordrecht, 93-105.
https://doi.org/10.1007/978-0-585-29606-7_6

[27]   IEA Statistics (2006-2014) International Energy Agencestatistical Data Base. Energy Statistic Division.
https://www.iea.org/statistics/statisticssearch/report/?country=Cameroon

[28]   KPDC (2015) Rapport d’activité 2014. Kribi Power Development Company, Kribi.

[29]   DPDC (2015) Rapport d’activité 2014. Dibamba Power Development Company, Dibamba.

[30]   INS (2013) Annuaire Statistique du Cameroun. Institut National de la Statistique, Yaoundé.

 
 
Top